Decentralized navigation control of multiple vehicles with obstacle avoidance

  • M-M.Mohamed-Ahmed  
  • Aziz Naamane
  • a,b Aix Marseille University, Université de Toulon, CNRS, LIS, Marseille, France
Cite as
Mohamed-Ahmed M.M., Naamane A. (2021). Decentralized navigation control of multiple vehicles with obstacle avoidance. Proceedings of the 20th International Conference on Modeling & Applied Simulation (MAS 2021), pp. 152-161. DOI: https://doi.org/10.46354/i3m.2021.mas.019

Abstract

This paper explains how to provide the control systems of a vehicle convoy with obstacle avoidance capabilities. The control system proposed in this paper ensures the convoy’s longitudinal and lateral safety with respect to the environment. The lateral convoy control approach consists of controlling the vehicles to avoid obstacles based on the sigmoid function used with a sliding mode control. The sigmoid function parameters are chosen according to the convoy’s position regarding the obstacle and the deviation towards the second lane for a multi-lane trajectory. The longitudinal control is based on a decentralized global approach using a linearization control by inverse dynamics to avoid the error accumulation. The whole strategy is validated on our SCANeRTM-Studio platform for a convoy of 5 vehicles. The validation results show the effectiveness of the proposed approach which ensures local safety between the vehicles.

References

  1. Arbitmann, M., Stählin, U., Schorn, M., and Isermann, R. (2012). Method and device for performing a colli- sion avoidance maneuver. US Patent 8,209,090.
  2. Ben-Messaoud, W., Basset, M., Lauffenburger, J.-P., and Orjuela, R. (2018). Smooth obstacle avoidance path planning for autonomous vehicles. In 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), pages 1–6. IEEE.
  3. Borenstein, J. and Koren, Y. (1989). Real-time obstacle avoidance for fast mobile robots. IEEE Transactions on systems, Man, and Cybernetics, 19(5):1179–1187.
  4. Borenstein, J., Koren, Y., et al. (1991). The vector field histogram-fast obstacle avoidance for mobile robots. IEEE transactions on robotics and automation, 7(3):278–288.
  5. Chebly, A. (2017). Trajectory planning and tracking for au- tonomous vehicles navigation. PhD thesis, Université de Technologie de Compiègne.
  6. Dai, S.-L., He, S., Cai, H., and Yang, C. (2020). Adaptive leader-follower formation control of underactuated surface vehicles with guaranteed performance. IEEE Transactions on Systems, Man, and Cybernetics: Systems. De La Fortelle, A., Qian, X., Diemer, S., Grégoire, J., Moutarde, F., Bonnabel, S., Marjovi, A., Martinoli, A., Llatser, I., Festag, A., et al. (2014). Network of automated vehicles: the autonet 2030 vision.
  7. Feddema, J. T., Lewis, C., and Schoenwald, D. A. (2002). Decentralized control of cooperative robotic vehicles: theory and application. IEEE Transactions on robotics and automation, 18(5):852–864.
  8. Huang, X., Zhang, W., and Li, P. (2019). A path plan- ning method for vehicle overtaking maneuver using sigmoid functions. IFAC-PapersOnLine, 52(8):422– 427.
  9. Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. In Autonomous robot vehicles, pages 396–404. Springer.
  10. Li, E., Bi, L., and Chi, W. (2020). Brain-controlled leader-follower robot formation based on model predictive control. In 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pages 290–295. IEEE.
  11. Liu, M., Rathinam, S., and Darbha, S. (2020). Lateral control of a convoy of autonomous and connected vehicles with limited preview information. arXiv preprint arXiv:2011.03587.
  12. Mohamed-Ahmed., M., Naamane., A., and M’sirdi., N. K. (2020). Global estimation for the convoy of au- tonomous vehicles using the sliding-mode approach. autonomous vehicles using statistical learning and kinematic model. IEEE Transactions on Intelligent Transportation Systems.
  13. Ren, W. and Beard, R. W. (2004). Decentralized scheme for spacecraft formation flying via the virtual struc- ture approach. Journal of Guidance, Control, and Dynamics, 27(1):73–82.
  14. Restrepo, E., Loria, A., Sarras, I., and Marzat, J. (2020). Leader-follower consensus of unicycles with communication range constraints via smooth time-invariant feedback. IEEE Control Systems Letters, 5(2):737–742.
  15. Yang, Z., Zhu, S., Chen, C., Feng, G., and Guan X. (2020). Leader-follower formation control of nonholonomic mobile robots with bearing-only measurements. Journal of the Franklin Institute, 357(3):1628–1643.
  16. Yuan, Y., Tasik, R., Adhatarao, S. S., Yuan, Y., Liu, Z., and Fu, X. (2020). Race: reinforced cooperative autonomous vehicle collision avoidance. IEEE trans- actions on vehicular technology, 69(9):9279–9291.