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Abstract 

Gas power plants are fast-establishing power plants capable of producing reliable energy in high watts volumes. One of its 
significant features is its dependency on natural air as raw material to run the gas turbine. Air passes through several stages 
that involve heating the air to increase its pressure before being used in electric power generation. Leakage in gas power 
stations is considered a vital indication of irregular processes of those stages. Any fault existing in the meanwhile operations 
can result in lousy production performance. Considering the human and economic losses of gas leakage, it has become a 
challenge to prevent the same. One of the essential approaches to managing gas leakage reduction is an accurate prediction. 
This paper proposes an automatic prevention approach relying on deep learning technology for predicting gas leakage status. 

Furthermore, a novel dataset was supplied by a natural gas power plant to predict CO and NOx emissions. The dataset is used to 
train the deep learning models using Long-short Term Memory and Feed-Forward Neural Networks. The optimum accuracy 
obtained is over 92% for CO and over 58% for NOx while using the LSTM model as a predictor. 
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1. Introduction

A gas turbine converts air into a high-temperature and 
high-pressure gas to spin a turbine engine (Li & Ying, 
2018). For electricity production, thermodynamic 
energy is transformed into mechanical energy. Power 
production in a gas-fired power plant (GPP) involves 
three basic components: gas compressor, combustor, 
and turbine (Li & Ying, 2018). Another important 

process in a gas turbine is generating combustion 
energy, which is used to heat the alleged working gas. 
The GPP's combustion chamber significantly 
compensates for the energy lost when the working gas 
leaves the compressor (Yazdani et al., 2020). A gas 
turbine's performance quality is determined by a 
number of considerations related to the operation of 
each GPP component. Many researchers focus on 
enhancing gas turbine performance, mostly by 
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enhancing the pre-turbine process (in the compressor 
and combustor part). The incoming air is cooled before 
entering the compressor to enhance the power output 
at the high ambient temperature (Liang et al., 2020). 
From this point, performance-enhancing 
technologies were introduced, employing mechanical 
coolers to cool the air before it was sent to the 
compressor. It is important to note that employing a 
chiller has significant operational costs; as stated in 
(Bao et al., 2019), it accounts for 30% of the electricity 
generation cost. Another disruptive and performance-
decreasing factor is turbine exhaust. According to (Bao 
et al., 2019), gas emissions depend on the ambient 
temperature of the intake air; it has been reported that 
the turbine's carbon emissions rise as the ambient 
input air temperature decreases. As reported by (Bao 
et al., 2019), gaseous emissions (i.e. carbon) depend on 
the fuel utilized in the combustion process. This paper 
presents a cost-effective alternative to improve output 
power quality and reduce pollution levels from gas 
turbine emissions. Since gas emissions are related to 
many aspects of turbine performance and quality, 
such as ambient inlet and outlet air temperature, 
ambient air pressure, ambient humidity, etc. Once 
emissions are successfully predicted, troubleshooting 
can be done to prevent future damage. In this paper, 
natural gas turbines are preferred because of their 
lower gas emission levels than diesel and petroleum 
fuels (Bao et al., 2019). In most countries, GPP is a fast 
and efficient alternative for generating electricity. In 
any power plant, safety and risk prevention studies are 
a must and must be carried out regularly to prevent 
unfortunate events. A large number of generating 
cooperatives and companies are conducting safety 
information studies. Take the example of a gas-fired 
power plant; gas leaks greatly impact human and 
property resources. According to (Matjanov, 2020), 
gas-fired power plants are located near residential and 
industrial areas, and there is a high risk of fire or 
explosion in the event of a gas leak. Risks of gas 
leaks/emissions may include poisoning, fire and 
impaired machine performance (Kwon et al., 2018). In 
2003, a gas eruption occurred in Kaixian Town, China 
County, killing 243 people and evacuating 100000 
people (Hashmi et al., 2020). In (Guteša Božo et al., 
2019), intelligent systems for monitoring city air 
pollution are being developed because of gas-fired 
power plants. Traditional monitoring systems that 
rely on humans to diagnose and report errors are no 
more keeping pace with the energy system's massive 
development. The use of semiconductor-based 
sensors for detecting gas leaks has a number of 
drawbacks, including low gas sensitivity (Caposciutti 
et al., 2020). Optical sensors have also been used for 
the same purpose, especially since light-emitting 
diode (LED) technology became commonplace. 
Unfortunately, due to their limited temperature and 
pressure tolerance, LED sensors are very prone to 
explosion, causing reliability issues when used in 

critical applications such as gas turbines (Majdi Yazdi 
et al., 2020). An approach was presented by (Sanchez 
et al., 2018) relying on wireless sensor networks 
(WSN) for gas leak detection using wearable sensors 
integrated into worker/employee suites. Wireless 
sensors are energy efficient and can be used in harsh 
environments, but this idea remains the limit of 
human availability and willingness to monitor 
processes inside gas turbines. Leakage event 
predictions depend on historical data from 
conventional gas turbine sensors and have been 
implemented in many studies as prior art. However, 
gas leak prediction (proactive control) and 
traditional/continuous monitoring activities support 
its results. It has not proven itself as an independent 
monitoring alternative for gas-fired power plants 
(Volponi, 2014). Computer vision methods such as 
neural networks have been used as the backbone of 
proactive emission monitoring methods in research, 
and the first research on the prediction of gas 
emissions based on neural networks can be traced 
back to 1999 (Lu et al., 2018). As described by 
(Aliramezani et al., 2020), Support Vector Machine 
(SVM) model was used to predict gas emissions such 
as (NOx) from gas turbines and diesel engines. 
Perform NO2, CO2, SO2 and O3 emissions prediction 
using LSTM model in Bangladesh (Karim, 2023). 
However, they have a disadvantage when choosing 
features, which can lead to erroneous output if done by 
trial and error. Classification and prediction of 
emissions from different fuels were performed using 
the support vector machine (SVM) and Artificial 
Neural Network (ANN) (Tuttle et al., 2020). An 
Extreme Learning Machine (ELM) has been used to 
predict the intensity of carbon emissions in some 
cities (Sun & Huang, 2022). In (AlKheder & 
Almusalam, 2022), a deep FFNN model was used for 
predicting CO2 emission amounts from a specific 
power sector in Kuwait. Deep Neural Network (DNN) 
and SVM models were effectively implemented in 
(Production, 2022), to predict CO2 emission in Tukey. 
Linear and nonlinear prediction methods are used for 
forecasting energy demand in (Wang et al., 2018), and 
it was subsequently pointed out that nonlinear 
predictors did not provide a significant increase in 
forecast accuracy compared to linear predictors. 

This paper proposes two artificial intelligent models, 
namely Feed-Forward Neural Network (FFNN) and 
Long Short Term Memory (LSTM), to capture the 
emission of two gases, Carbone monoxide (CO) and 
Nitrogen oxides (NOx). These models were developed 
using a dataset collected in 5 years (2015 – 2019), 
representing the largest dataset gathered for this 
topic. An active method relying on computer vision 
and deep learning paradigms is developed to predict 
gas emissions. Once emissions can be accurately 
predicted, troubleshooting may be done to avoid 
further damage. The substance of this paper is 
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structured as follows: In the following section, the 
required steps for power production and causes of gas 
leakage in a gas power plant are discussed. Section 3 
introduces the collected data set with the statistical 
analysis of its features. Section 4 describes the 
proposed prediction models. The experimental results 
are presented in Section 5. Results are discussed in 
section 6. The conclusion and further research 
direction were presented in the last section. 

2. Gas power plant
The gas power plant is among the high-performance
power stations in terms of production and cost. It is
reported that gas power plants can be constructed
faster than other plants, which is the best option for
urgent demands. Those plants use the air as raw
material and heat power as a helping factor. The power
generation process in gas power plants ends by
turning the turbine (gas turbine) blades and
maintaining it to run in stable performance. The
following steps are considerable during the power
production of gas power plants:

1) air (normal air) is processed through the air
filter to eliminate the dust and other associates
mixed with air. Air is required to be passed to the
upcoming stage with high pressure. Thus, the
compressor is used for increasing the air pressure;
say, at the compressor, inlet air is provided at low
pressure, and its outlet air is reproduced with high
pressure.

2) many researchers insist that using a cooling
system before the compressor increases the air 
pressure. Hence, the cooling system is essential
for pressure performance enhancement; it has
been adopted in gas power plants.

3) as stated above, the gas turbine deploys two raw
materials to generate electrical power. Those
materials are natural air and heat energy from fuel
ignition. Subsequently, the regenerator inlet air is
provided at high and low temperatures, and its
outlet air is reproduced with high pressure and
temperature. In the next stage, after the air
compression, air regeneration takes place, which 
involves heating the high-pressure air. The
heating process passes this highly pressured air
through a network of fine tubes (heat exchangers).
Those fine tubes are exposed to hot gases, usually
hung over from the upcoming stages in the gas
turbine. This gas is termed as exhausted gas and
feedback from the other process of the gas power
plant.

4) The air enters the compensation chamber at
high pressure and temperature. However,
burnable fuel is resided in this chamber and is
meant to overheat the incoming air to a very high

temperature, i.e. 3000 degrees (F). Gas power 
plants utilize oil fuel for heating purposes, and 
this stage is encountered exhaust gases that result 
after passing the very hot air into temperature 
mitigation rooms. Those exhausted gases are 
feedbacked to the regenerator stage (point 3). 

5) the final voyage of the air ended with
temperature mitigation after the air passed out
from the compensation chamber. Temperature is
mitigated from 3000 degrees (F) to 1500 degrees
(F) which is proved to be a suitable temperature
for turning off the gas turbine (alternator). Figure
1 demonstrates all the mentioned stages.

Figure 1. Gas turbine flow diagram illustration of air journey 

In order to study the causes and impact of gas leakage 
in the gas turbine, the following points are brought up 
as the main motivations behind the study: 

a. gas leakage is health damaging, considered the
leading cause of organ cancers, i.e. lung and skin
cancer. More leakages cause instant death due to gas
poisoning, which makes the major power industry
life-risking.
b. technically, a gas power plant is similar to other 
traditional power generation plants, such as diesel
power plants, etc., in terms of running cost. Every
kilowatt of electrical power has a particular cost
involving fuel and other operational costs. Gas
leakages lead to performance dropping, which impacts
power generation.

It can be concluded that preventing leakage may save 
both lives and costs, and it is proposed that proactive 
measure is essential in preventing gas leakages. This 
approach is made using gas leakage prediction based 
on historical leakages of the power plant. In order to 
implement this approach, the following prerequisites 
are mandatory: Adoption of an intelligent method for 
prediction tasks. This presents two approaches: the 
analytical approach, including likelihood methods, 
hidden Markov model, Bayesian rules, etc., and the 
computational approach that relies on computer 
vision programs in prediction tasks. The first 
approach (analytical prediction) is associated with 
high computation budget and forces another cost 



  

during its adoption. Subsequently, the computational 
approach outperformed and was selected for 
prediction implementation. Significant data 
availability is essential for working with intelligent 
prediction models. This data is obtainable from 
monitoring and logging information recorded for an 
extended period in the same power plant. However, 
data adaptation from other power plants for 
implementing a prediction model cannot stand in 
terms of prediction accuracy. Dealing with the 
supervised problem is required obtaining data related 
to the same problem space to ensure precession in 
prediction. 

3. Dataset description
The dataset is collected from a natural gas power plant
near Baghdad's northern border to build the
prediction model. The gas leakage level from the
turbine entities is after that termed as the number of
gas turbine emissions. The emission of poisonous
gases from the said gas turbine was monitored using
nine sensors to detect the emission of NOx and CO
from the turbine corpus. Data is being broken down for 
hourly readings from each sensor. In other words, a
sensor reading for an hour is accumulated into one
reading by applying a sum or average to all readings.
Besides, This dataset is collected for five years with a
total of 39677 hours. Data includes gas turbine
parameters (temperature and pressure) and ambient
variables. Each sensor is used to determine specific
features. Table 1 prescribes the general characteristics 
and descriptive statistical analysis mentioned in the
dataset. The data is gathered within a range of
operations between 70% for a partial load and 88% for 
a full load. After one year of monitoring data,
statistical analysis is performed to study the CO and
NOx leakage level, and the results in Table (2) are
achieved. The maximum leakage level of CO and NOx

gases was obtained at 45.2761mg/m3 and 71.808
mg/m3, respectively, while the minimum leakage level
was 0.27664 mg/m3 and 11.543 mg/m3, respectively.
The median and mean of CO and NOx leakage levels are
measured too. CO and NOx are demonstrated by
histogram as in Figure 2. Figure 3 shows the gas
turbine's schematic diagram used in the paper, where
the sensing and monitoring system in the gas turbine
shows the values of continuous, real-time parameter
sensing and monitoring for the data centre. 

Table 1. Emission sensing information (variables) used for the 
prediction approach 
Variable Annotation Unit Min. Max. 

Ambient Air 
Temperature 

AAT ᵒ C 0 49.9 

InletCompressor
Pressure 

CIP mbar 991.2 1033 

Relative Humidity RH % 12 100 
Turbine Inlet Discharge 
Pressure 

TIDP mbar 4.17 15.22 

Exhaust Pressure  EP mbar 15.92 37.60 
InletCompressor

Temperature 
CIT ᵒ C 800.64 889.48 

Exhaust Thermocouple  ET ᵒ C 408.83 440.48 
Turbine Energy TE MWH 70.72 111.96 
Compressor Discharge 
Pressure 

CDP mbar 11.84 18.19 

Table 2. CO and NOx emission levels value analysis 
Min Max Med Mean 

CO 0.27664 45.2761 3.49011 4.586391966 
NOx 11.543 71.808 34.4646 36.550022 

Figure 2. Histogram representation of CO and NOx emissions 

Figure 3. The turbine data 

Figure 2 above revealed that CO emission volume was 
2 mg/m3 to 4 mg/m3. Similarly, NOx emission volumes 
in the range of 30 mg/m3 to 40 mg/m3 are the highest 
among recorded emissions. 

In order to demonstrate the linear relationship 
between dataset features and the emissions of CO and 
NOx gases, Pearson correlation (Equation 1) is 
obtained between each feature and gas emission 
values; the same is demonstrated in Table 2. 

     𝑃. 𝐶. =
∑(𝑥𝑖−𝑥′)(𝑦𝑖−𝑦′)

√∑(𝑥𝑖−𝑥′)2 ∑(𝑦𝑖−𝑦′)2
(1) 

Wherein, 
P.C. represents the Pearson correlation coefficient,
xi represents the values of the x-variable sample,
x' represents the mean of the x-values variable,
yi represents the values of a sample's y-variable
y' represents the mean of the x-values variable.

Table 3. Pearson correlation between the dataset features and the 
targets/gases emission 

Table 3 revealed that Exhaust Thermocouple (ET) has 
a very weak linear relationship with the emission 

InletCompressorwhereasCO,ofvolumes
linearstrongestthehas(CIT)Temperature

AAT CIP RH TIDP EP CIT ET TE CDP 

CO -
0.07 

0.12 0.02 -0.03 -
0.07 

-0.12 0.05 -
0.003 

-
0.06 

NOx -
0.57 

0.53 0.43 -0.29 -
0.02 

-0.14 -
0.18 

0.001 0.001 
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relationship. On the other hand, Turbine Energy (TE) 
and Compressor Discharge Pressure (CDP) have a very 
weak linear relationship with NOx emission volumes. 
In contrast, Ambient Air Temperature (AAT) has the 
strongest relationship. 

4. Prediction models

The core objective of this section is to highlight the 
internal sections (participants) of the prediction 
paradigm and the measures taken to optimize the 
model's performance. The prediction model consists 
of two stages: training and testing. During the training 
stage, data in high volumes are fed into the model, 
which is tuned up for mapping those data into the 
appropriate target. Deep learning classifiers are being 
used to implement such a model: FFNN and 
RNN/LSTM. Figure 4 Outlines the required steps for 
the prediction model. 

It was knowing that data fusion, normalization, and 
feature selection (Pearson Correlation) are meant to 
enhance prediction accuracy. Moreover, K-fold cross-
validation was used to avoid model overfitting, in 
which the data was partitioned into 10 folds. Then, the 
model was repeatedly trained on nine folds, with the 
last holdout fold serving as the test set. In order to 
overcome the variance in the dataset, the min-max 
feature scaling technique was used, where all dataset 
values were changed to a (0-1) scale without losing 
information. The accuracy can be calculated as per the 
below equation: 

      𝐴𝐶𝐶𝑈𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝑠
    (2) 

To understand the distribution of errors in the 
classifier results, mean square error (MSE) is 
calculated, which describes the error between 
predicted and actual values by providing the average of 
the square error. However, mean absolute error (MAE) 
and root mean square error (RMSE) are evaluated for 
more abstraction of error understanding. The MAE 
provides a smaller in-value output than the MSE 
value, revealing the prediction error amount. 
Similarly, RMSE is meant to downscale the MSE value 
into smaller values (see Equations 3,4 and 5). 

  𝑀𝑆𝐸 =
∑ 𝑒𝑖

𝑛=1 (𝑛)2

𝑖
 (3) 

 𝑀𝐴𝐸 = ∑
|𝑒[𝑖]|

𝑖
𝑖
𝑛=1  (4) 

  𝑀𝑆𝐸 = √∑ 𝑒𝑖
𝑛=1 (𝑛)2

𝑖
  (5) 

Figure 4. Outlining of the prediction model, including the 

preprocessing and post-processing paradigms 

4.1.    FFNN 

Feed-forward neural networks (FFNNs) are known for 
their ability to learn complex problems and provide 
solutions by learning hidden structural relationships 
of input strings (Lemma & Hashim, 2012). For the 
simple single hidden layer FFNN (net) shown in Figure 
5, supervised learning must be provided by using the 
inputs vector r=[r1,r2,r3,…,ri] and targets vector 
T=[T1,T2,T3,…,Ti]. Errors are identified by correlating 
the resulting and target vectors (Equation 6). The 
weight coefficients (W) between layers can be adjusted 
to meet the minimum error output (Jiao et al., 2011). 

  𝑅 = 𝑛𝑒𝑡 (𝑟)     (6) 

𝑅 = 𝑊 × 𝑟 + 𝑏   (7) 

R is the output vector, r represents the random 
variable, and b is the model bias. Therefore, the net 
can adjust the W coefficient to achieve the best 
correlation between R and T (Zhang et al., 2006). In 
other words, the learning process is to find the 
minimum of equation (3).   

𝑒 = 𝑅 − 𝑇  (8) 

e is the error vector, a measure of training/learning 
performance (Yu et al., 2011).  



 

Figure 5. The input, weights, biases, and output are displayed in the 
FFNN layer structure 

Net is trained on guessing the gas leakage level. The 
prediction model begins with baseline development 
using a feedforward neural network classifier. The 
model size and the number of iterations were adjusted 
to dramatically improve the classifier's performance, 
as listed in Table 4. FFNN is realized by allotting the 
weight coefficients randomly to the neurons. That 
impacts the output quality; varying output is yielded 
from the model of mentioned settings. 

Table 4. Baseline standard FFNN model 

Parameter Value 

Number of hidden layers  Single (1) 
Goal training performance (MSE) 1 × e−201 
Training model  Levenberg–Marquardt 

algorithm  
Minimum gradience  1 × e−1 
Maximum fails  10 
Epochs  22 
Training time goal (seconds) 1 

4.2.    LSTM 

LSTM networks are a common type of neural network 
that uses the backpropagation training technique. 
LSTMs are constrained to be recurrent neural 
networks in which data predictions depend on 
previous predictions of the same data. For example, 
using the RNN network to predict the next word in a 
speech sequence (sentence) depending on the 
preceding word in the same context (Kwon et al., 2018) 
(Safiyullah et al., 2018). 

Figure 6. RNN structure 

Considering the illustration in Figure 6, the 
expectation of the upcoming word in a spoken 
sentence (t) contains multiple words. Every word is 
portrayed as x1, x2, xt, and the input word is fed into (t) 
multiple training models. A singular neural network is 
trained separately using the input provided and 
produces an output as y1, y2, y3, and yt. In the RNN 
network, the subsequent output prediction depends on 
the preceding neural network's output and updates the 
subsequent model training process by generating 
coefficients such as h1, h2, h3, and ht, etc. It is difficult 
to achieve the desired accuracy out of RNN because of 
the vanishing gradient problem, which cancels out the 
training accuracy. To solve this issue, LSTM is 
designed to combat the gradient vanishing problem 

via a gating mechanism, as shown in Figure 7.

Figure 7. LSTM internal structure 

LSTM neural networks are designed to address 
learning errors and interruptions in training, 
especially when the data changes. The model starts by 
defining input arrays, which could be data and target 
arrays. However, in a neural network with long short-
term memory, there is no need to define the data as a 
horizontal or vertical representation. Data can be 
entered in rows and columns, and targets can be 
regular arrays represented by rows or columns.  
A point of contention is determining the number of 
hidden layers that affect the model's overall 
performance. In this paper, various hidden gates were 
tested to meet different performance requirements, 
such as scaling downtime or improving accuracy. We 
ended up with two hidden gates that made timing and 
accuracy as required. 

5. Results and discussions

The overall accuracy and performance metrics results 
of CO and NOx emission prediction using the FFNN 
model and 10-fold cross-validation were obtained. 
The performance of each fold is represented 
independently in Table 5. 

Table 5. k-fold cross-validation, accuracy, and performance metrics 
for flue gas emission prediction using standard FFNN model. The best 
results are shown in bold. 
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Table 5 shows that the best results for CO and NOx are 
obtained on the 6-fold and 5-fold cross-validation, 
respectively. Furthermore, MSE is the biggest value, 
and RMSE is almost half the values of the MSE, which 
validates the formulas of MSE and RMSE given 
previously.   

On the other hand, LSTM is used for predicting the 
emission of CO and NOx gases, and the prediction 
results are given in Table(6). 
Table 6. Accuracy and performance metrics for flue gas emission 
prediction using the LSTM model 
Metric CO Prediction 

Performance 

NOx Prediction 

Performance 

Accuracy 92.9979 58.2165 

MSE 0.3094 0.8357 

RMAE 0.5562 0.9141 

MAE 0.4323 0.7553 

The scatterplots shown in Figures (8) and (9) 
demonstrate a perfect correlation of predicted values 
against observed ones. According to the above Table, 
the LSTM model outperformed the FFNN model by 
61.52 percent for CO gas prediction accuracy and 65.58 
percent for NOx gas leakage prediction accuracy. 
Furthermore, the LSTM prediction model performs 
more acceptably because the predicted values overlap 
entirely with the total number of observed cases. 

Figure 8. Scatterplots for the LSTM prediction  model (CO emission) 

Figure 9. Scatterplots for the LSTM prediction model (NOx emission) 

6. Conclusions

Predicting gas leakage in gas power plants is 
considered a challenging task vital for workers' safety, 
environments, and economic system. Two main gases 
are dominant in this paper, namely CO and NOx. 
Considering the poisonous impact of those gases and 
their correlation with the internal gas turbine process 
and generation performance, inventing a cost-
efficient and reliable technique for combating such 
leakages becomes essential. According to the results 
above, the following points can be concluded: 
(a) Results show that the accuracy of the prediction of
CO gas leakage is greater than that of the prediction of
NOx gas leakage. That difference in accuracy is
measured to be 44.01 percent in the FFNN model and
37.4 in the LSTM model, favouring CO gas leakage
prediction that leads to the accuracy over the NOx gas
leakage prediction.

(b) Both accuracies of prediction gas leakage in
standard FFNN are in low grade; the maximum
accuracy is 35.7852 percent, while in the LSTM model,
the accuracy reached 92.9979 percent for CO and
58.2165 for NOx.

(c) The performance gap in predicting the CO and NOx

gas emission can be related to the difference in the
amount of leakage (as in Tables 2 and 3). CO gas
leakage reached 45.2761, while the NOx gas leakage

Fold 

No. 

CO Prediction Performance NOx Prediction Performance 

ACC. MSE RMSE MA

E 

ACC. MSE RMSE MA

E 

1 34.5

3 

5.34

2 

2.709 2.56

3 

19.7

5 

3.70

3 

1.949 0.12

2 

2 35.2

8 

5.34

0 

2.709 2.56

3 

19.7

6 

3.70

5 

1.950 0.12

2 

3 34.2

8 

5.34

5 

2.710 2.56

4 

19.8

5 

3.72

3 

1.909 0.12

2 

4 34.5

3 

5.31

9 

2.705 2.55

9 

19.6

6 

3.79

1 

1.941 0.12

3 

5 34.2

8 

5.32

2 

2.705 2.56

5 

20.0

3 

3.55

6 

1.936 0.12

1 

6 35.7

8 

5.29

6 

2.701 2.55

6 

19.6

7 

3.68

9 

1.942 0.12

2 

7 34.0

2 

5.30

1 

2.702 2.55

9 

19.6

2 

3.67

9 

1.937 0.12

2 

8 34.7

8 

5.32

5 

2.706 2.55

9 

19.6

1 

3.67

8 

1. 937 0.12

2 

9 35.0

3 

5.33

8 

2.708 2.56

2 

19.7

4 

3.70

2 

1.949 0.12

3 

10 33.5

2 

5.38

1 

2.717 2.57

3 

19.8

3 

3.71

9 

1.958 0.12

2 



  

reached 71.808. However, the target (labels) vector of 
NOx gas has a maximum number of classes, which 
applies a computational load on the classifier, hence 
low-grading the prediction accuracy. 

Data availability is the main challenge in this paper. 
According to the majority of previous research works, 
own datasets were used. The majority of these datasets 
are not open-access. This study identified a number of 
features, techniques, and models that are expected to 
be evaluated in future work. In addition, other gas 
emissions can be modeled and predicted using similar 
test data. Intelligent system models can be applied to 
power plants to be studied as future emission 
reduction systems. 
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