
11th International Workshop on Simulation for Energy, Sustainable Development & Environment20th International Multidisciplinary Modeling & Simulation Multiconference
2724-0061 © 2023 The Authors.doi: 10.46354/i3m.2023.sesde.004

© 2023 The Authors. This article is an open access article distributed under the terms and conditions of the CreativeCommons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

EvaluatingMachine Learning and Heuristic OptimizationBased Surrogates as a Replacement for a ComplexBuilding SimulationModel
Kathrin Kefer1,*, Samuel Haijes1, Michael Mörth2, Richard Heimrath2, ThomasMach2, Valentin Kaisermayer3,4, Christopher Zemann4, Daniel Muschick4,Bogdan Burlacu5, Stephan Winkler5 and Michael Affenzeller5
1Fronius International GmbH, Günter-Fronius-Straße 1, Thalheim, 4600, Austria2Institute of Thermal Engineering, Graz University of Technology, Inffeldgasse 25b, Graz, 8010, Austria3Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21b, Graz, 8010, Austria4BEST - Bioenergy and Sustainable Technologies GmbH, Inffeldgasse 21b, Graz, 8010, Austria5Heuristic and Evolutionary Algorithms Lab, University of Applied Sciences Upper Austria, Campus Hagenberg,Softwarepark 11, Hagenberg, 4232, Austria
*Corresponding author. Email address: kefer.kathrin-maria@fronius.com

Abstract
Intelligent energy management systems can play a vital role in supporting the much needed energy transition. However, in order totrain machine learning models for this task, often very complex and detailed simulation models are needed. This can make the overalltraining process very slow or even impossible, which is why using resource efficient surrogates of the original simulation model duringthe training can be a possible solution. This work therefore focuses on the training of surrogates of a very detailed building simulationmodel using three different algorithms (k-Nearest Neighbour, Random Forest and Genetic Algorithm) and evaluates and comparesthem for their prediction capabilities, learned behaviours as well as execution time. Results show that the Random Forest algorithmachieves the best overall performance for 28 of the 35 surrogates, can learn the expected behavior and improves the execution speed bya factor of up to 664 compared to the original IDA ICE simulation model.
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1. Introduction
In the last years, climate change has proven to bring a lotof challenges for the future due to heating up the earth andby that facilitating enhanced natural disasters like floodsor draughts. In order to push the energy transition, theworld tries to limit the global warming and agreed in theParis Agreement (par, 2015) to keep the rise of the global

average temperature well below 2°C. In addition to that,according to the Global Status Report for Buildings andConstruction (environment programme, 2021) done bythe UN environment program, buildings (residential andnon-residential) are responsible for 27% of the CO2 emis-sions. Therefore, intelligent systems that can optimizethe energy flows in buildings, so that as much renewableproduced energy as possible is used, become increasingly
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important. Until now, such systems either follow verysimple, rule-based approaches (e.g. (Salpakari and Lund,2016)) or take a long time during their execution due toneeding a simulation model for predicting the future sys-tem behaviour (e.g. (Chen et al., 2013; Godina et al., 2018)).In order to avoid these drawbacks, new approacheswhich use heuristic optimization based algorithms havecome up (Morganti et al., 2009; Soares et al., 2016). How-ever, as the training with such algorithms takes a lot ofiterations and especially when using a simulation modelfor the training also a lot of time, it is essential to keepthese simulation models as fast as possible. If the modelsare very detailed, thus resulting in longer execution timesper iteration, one option is to replace them with surrogates.These surrogates should approximate the behaviour of thesimulation model as well as possible while simultaneouslykeeping the execution time as small as possible. This iswhy in this work three different algorithms are used for thetraining of such surrogate models, including the k-NearestNeighbour (kNN) as the most basic machine learning al-gorithm, the Random Forest (RF) as well-known bench-marking algorithm and also the Genetic Algorithm (GA)in combination with Symbolic Regression due to its abilityto be extremely performant during the execution.Therefore, this work contributes to the presented re-quirements in the following ways:
• In total, 7735 surrogates are trained for 35 outputs ofa detailed building simulation model using three al-gorithms and different parameter settings: k-NearestNeighbour, Random Forest and Genetic Algorithm.• The surrogates are evaluated and compared with eachother for their ability to match the predicted outputswith the simulation outputs on a held-back test set.• The speed up of the execution is tested in comparisonto the original simulation model.

The remaining work is structured as follows: chapter 2gives an overview over related work, followed by the de-scription of the method in chapter 3. Chapter 4 gives anoverview on the results and chapter 5 concludes this workwith a short summary and an outlook on future work.
2. Related Work
There are different approaches on how to train surrogates,and also a wide variety of applications and use cases avail-able. Examples can be found for spot welding sequence op-timization, where surrogates are trained using Neural Net-works (Tabar et al., 2020), the approximation of a reservoirsimulation based on deep learning surrogates (Jin et al.,2020), or the approximation of the low voltage energy gridalso using artificial neural networks (Balduin et al., 2020).The use case for this work is the approximation of abuilding simulation model in order to speed up the latertraining of an energy management system, whose objec-tive is to optimally control the energy flows in a building inorder to minimize its energy costs. Therefore, this chapter

summarizes mainly related works where surrogates aretrained by machine learning models and used to approx-imate building simulation models. The used algorithmsrange from classic machine learning e.g. by using supportvector machines up to sophisticated deep learning models.
Classic machine learning algorithms used to train thesurrogates are mainly focused on support vector machines(SVM) and mostly use the simulation environment Ener-gyPlus (Crawley et al., 2000) as a basis for the training. Forexample, already in 2012, Eisenhower et al. (Eisenhoweret al., 2012) simulated an EnergyPlus building model andthen trained a Support Vector Regression model on thisdata. This surrogate is then used for the optimization ofthe building in regard to a cost function which penalizesthermal comfort and energy consumption (Eisenhoweret al., 2012). In 2017, Chen and Yang (Chen and Yang, 2017)published their work on a surrogate-based multi-stageoptimization of passively designed high-rise residentialbuildings. Just as Eisenhower et al., also Chen and Yanguse an EnergyPlus simulation model as basis for the surro-gates, but train different surrogate model types: one basedon multiple linear regression (MLR), one on multivariateadaptive regression splines (MARS) and one also on sup-port vector machines. The SVM surrogate achieved thebest prediction performance and is therefore used to opti-mize the design of the building using the multi-objectiveNSGA-II (Non-Dominated Sorting Genetic Algorithm II).With that, the computational efficiency of the trainingswith the NSGA-II could be greatly improved (Chen andYang, 2017). One approach using the k-Nearest Neighbouralgorithm was proposed by Liang et al. in 2022 (Lianget al., 2022). Using simulations done in EnergyPlus, theycreated an electric load database with seven building pa-rameters as inputs and the respective hourly energy con-sumption as output. With that, they trained five k-NearestNeighbour surrogates using five different spatial metricsand evaluated them for their ability to predict hourly heat-ing/cooling loads for hotel, office and retail buildings. Withan accuracy of more than 90%, their approach proved toachieve very good results (Liang et al., 2022).
Another early work, but one that uses an artificial neu-ral network (NN) to train surrogates, was presented byMagnier and Haghighat in 2010 (Magnier and Haghighat,2010). They use the simulation environment TRNSYS andvalidate the created simulation model with measured data.Once the training of the artificial neural network with thevalidated model is done, the prediction results from thenetwork are also validated. Finally, similar to the workdone by Chen and Yang (Chen and Yang, 2017), also anNSGA-II is used to optimize the thermal comfort and theenergy consumption in the residential building (Magnierand Haghighat, 2010). In the same year, Wong, Wan andLam (Wong et al., 2010) published their work on an ar-tificial neural network surrogate based on an EnergyPlussimulation model. From this simulation model, they ex-tract weather and time data, the electric load for heating,cooling, lighting and the total building energy consump-
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Table 1. An overview of the related works presented in chapter 2 for the used algorithms in comparison to this work and ordered by their year of publishing.
Authors Year Simulation Environment AlgorithmkNN SVM RF NN MLR MARS GPM GAMagnier and Haghighat 2010 TRNSYS xWong et al. 2010 EnergyPlus xEisenhower et al. 2012 EnergyPlus xChen and Yang 2017 EnergyPlus x x xWestermann and Evins 2021 Net-Zero navigator project x xLiang et al. 2022 EnergyPlus xKefer et al. 2023 IDA ICE x x x

tion. Using this data, the surrogate model is trained andtested for its efficiency on four electrical target values withthe Nash-Sutcliffe coefficient. With this approach, the au-thors achieved excellent prediction power and only smallerror rates (Wong et al., 2010). A more recent work whichuses Bayesian Neural Networks to train surrogates waspresented by Westermann and Evins in 2021 (Westermannand Evins, 2021). In their work, they try to approximatetwelve energy performance metrics of a complex, highdimensional building using 35 input values. With that,they try to optimize the building’s energy performance.In addition, they also train a stochastic variational Gaus-sian Process model (GPM) as surrogate and compare itsperformance to the one trained with the Bayesian NeuralNetwork and find that both approaches achieved competi-tive results (Westermann and Evins, 2021).Summing up and as shown in table 1, it can be statedthat there are similar approaches already available in lit-erature using classic machine learning (Eisenhower et al.,2012; Chen and Yang, 2017; Liang et al., 2022). Except forone work that uses the k-Nearest Neighbour from Lianget al. (Liang et al., 2022) in a similar way as it is done inthis work, the related works mainly focus on the usage ofsupport vector machines, which is not done in this workdue to performance reasons during the training. Despitethat, to the best of our knowledge, there are no previousworks using a Random Forest algorithm and a Genetic Al-gorithm to train building simulation model surrogates. Inliterature, heuristic optimization algorithms are mainlyused as the optimization algorithm in a surrogate assistedoptimization approach, but not to train the surrogatesthemselves as it is done in this work. This work is also nottraining neural networks to create surrogates again dueto performance reasons and uses an IDA ICE simulationmodel as a basis instead of an EnergyPlus model. This workalso focuses more on a comparison of the three differentalgorithms used to create the surrogates using error met-rics, a behaviour analysis and by measuring the executiontime of the final surrogates.
3. Method
In order to create the surrogates, first all necessary data isextracted from the simulation model (section 3.1) by run-ning it for a total of four years starting at the beginningof 2018. During that process, the input data used for thesimulation model as well as all relevant output values are

recorded and stored in csv files for later usage. This data ba-sis and the additional features calculated for the surrogatetrainings are described in more detail in section 3.2. Usingthis data, the surrogates are trained with three differentalgorithms (k-Nearest Neighbour, Random Forest and Ge-netic Algorithm) in the optimization framework Heuristi-cLab (Wagner et al., 2010) with multiple hyperparametersettings (section 3.3). Finally, the trained surrogates areevaluated for their prediction capabilities, behaviour andtime saving capabilities as explained in section 3.4.
3.1. Building SimulationModel
The building in focus is located in the Innovation DistrictInffeld at Inffeldgasse 19, Graz, Austria (see figure 1). Itwas built in 2012 and is heated and cooled by two heatpumps and a coupled geothermal probe field. Heating andcooling are provided by underfloor heating and three cen-tral ventilation systems. The net floor area (2 216.84 m²)is divided into the following uses: 43% offices, 26% circu-lation areas, 8% storage, 7% recreation rooms, 5% lecturehalls and libraries, 5% technical facilities, 4% sanitaryand other areas and 3% laboratory and workshop. Thesanitary and technical areas are connected to an exhaustair system. In addition, the circulation and sanitary ar-eas are continuously supplied with fresh air by a centralventilation system. Table 2 shows the physical propertiesof the building envelope, as well as the net volume (NV),area/volume ratio (A/V), window/area ratio (W/A) and theinfiltration rate at a pressure difference of 50 Pa (n50) asinput variables to the simulation model.Based on the described parameters, a multi-zone sim-ulation model was created in the IDA ICE simulation envi-ronment (AG, 2022) and calibrated using measurementdata. The thermal zoning of the model is based on ÖNORMEN ISO 52016-1 (International, 2018) and considers theinfluencing factors solar radiation, orientation, occupancy,schedules and function as identified by Shin et al (Shinand Haberl, 2019). The use profiles are based on SIA2024:2015 (und Architektenverein, 2015). The validationand calibration processes are done by evaluating the devia-tions of the simulation model from the real system. In addi-tion, the annual heating and cooling energy in kWh/(m2∗a)and the monthly heating and cooling energy in kWh/m2 ofthe simulated and the real system are compared.The year 2019 is used for the validation, as full occu-pancy (pre-corona) can still be assumed. The first step is
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Table 2. Properties of the simulation model in terms of building physics.

Building Envelope Area U-Value UA-Value Share NV A/V W/A n50Designation [m²] [W/(m²·K)] [W/K] [%] [m³] [m²/m³] [%] [1/h]Walls in contact with air 907,46 0,2022 183,51 18,65%Walls in contact with the ground 400,87 0,2092 83,85 8,52%Roof 515,94 0,1389 71,66 7,28%Floor in contact with the ground 562,47 0,1144 64,34 6,54%Glazing 552,31 0,9605 530,51 53,90%Thermal bridging - - 50,34 5,11%Total 2939,05 0,3349 984,21 100% 7954 0,3695 18,79% 1,2

Figure 1. Inffeldgasse 19 in its real state in the picture on the right and thesimulation model in IDA ICE on the left (Mörth, 2022)

to define the parameters and their bandwidths to adaptthe simulation to reality and reduce the “performancegap”. For the calibration process, energy transmittance (g-value), infiltration (n50), thermal bridging coefficient (ψ-value) and internal heat loads for occupancy, lighting, andequipment, and finally the efficiencies of the latent heatexchangers in the ventilation system are used. For that,the released parameters are adjusted, and the deviation isreduced with the help of Automatic Multi-Objective Opti-mization (AutoMOO), which is an internal optimizationalgorithm of IDA ICE. These steps are repeated until the re-quirements for the model are met or a maximum numberof iterations is reached. A very good agreement of the cal-ibrated simulation results with reality could be achievedwith that process. From November to March there is a max-imum relative deviation of -3.4% (-0.3 kWh/m²). Largerelative deviations occur only in the transitional months,for example up to 62.7% (0.4 kWh/m²) in September. Adetailed description of the modelling method and the fullset of boundary conditions and results can be found in themaster thesis of Michael Mörth (Mörth, 2022).
3.2. Data Basis
As data basis, four full years (2018-2021) are exported fromthe simulation model by running it in the IDA ICE (AG,2022) simulation environment with an interval of 300 sec-onds in open-loop, i.e. no thermal controllers active, withan amplitude modulated pseudo-random bit sequences

(APRBS), where the valve position was constant for sixhours at a time. During the run, the input data as well as104 relevant output values are logged and exported to a csvfile once the simulation is finished. As input data for thesimulation, weather data for the city of Graz, Austria, isfetched from the Geosphere data hub (zam) and containsthe ambient temperature in °C (figure 2 (a)), the relativehumidity (figure 2 (b)), wind speed in x and y direction(figure 2 (c)) and the solar irradiance values direct normal,diffuse horizontal and global horizontal irradiance (fig-ure 2 (d)). The output values relevant for the surrogatetrainings include the timestamp, the electric load for heat-ing and cooling (figure 3 (a)) and the room temperatures(figure 3 (b)) as well as the valves for heating and coolingfor each of the 34 controllable rooms in the building.
As preprocessing steps, the valves for heating and cool-ing are combined into one value with a range of [–1; 1](figure 3 (c)), where positive values denote heating andnegative values denote cooling. Then, the two output val-ues for the electric load for heating and cooling of the build-ing are combined by summing them up, which results inone electric load value. Based on the timestamp, sevenadditional time-based features are calculated for the train-ing of the surrogates: the hour of the day, the day of theweek as well as the month of the year each in sine/cosinerepresentations (figure 3 (c)) so that the cyclic nature ofthese values is reflected appropriately, and a boolean indi-cating whether it is a working day (represented as 1) or anon-working day like saturday, sunday or public holiday inStyria, Austria (represented as 0). The sine and cosine rep-resentations are calculated as shown in equations 1 and 2.
y = sin(2 ∗ π ∗ ParameterValue/maxValueOfParam) (1)

y = cos(2 ∗ π ∗ ParameterValue/maxValueOfParam) (2)
Once the preprocessing is finished, the full four yeardataset is split up into two separate ones. The first oneincludes the first three years of the data from 2018 untilthe end of 2020. It is used for the training of the surrogatesby using the first two years directly as training data and theyear 2020 for testing. The remaining year 2021 is used asheld-back test set for the final evaluation of the surrogatesas described in section 3.4.
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(a) The ambient temperature for 2018 and 2019 in °C.

(b) The relative humidity for 2018 and 2019 in %.

(c)The wind in x and y direction for 2018 and 2019 in m/s.

(d) The global irradiance values for 2018 and 2019 inW/m².
Figure 2. The weather data used as input for the simulation of the IDA ICEbuilding model for 2018 and 2019.

3.3. Building SimulationModel Surrogates
The training of the simulation model surrogates is donewith three different algorithms, all implemented in theoptimization framework HeuristicLab (Wagner et al.,2010), and include the k-Nearest Neighbour, the RandomForest and the standard Genetic Algorithm (Srinivas andPatnaik, 1994). The years 2018 and 2019 of the datasetdescribed in section 3.2 are used as training data and

(a) The summed electrical load for heating and cooling ofthe building for the years 2018 and 2019 in Watts.

(b) The temperature course of a room (ground floor corri-dors and halls) for the years 2018 and 2019 in °C.

(c) The valve for the room ground floor corridors and hallsas well as the sine and cosine representation of the monthfor the years 2018 and 2019.
Figure 3. An example of a room temperature, the building load for heatingand cooling and the room valve for the training data years 2018 and 2019.

2020 is used as test data during the training. Using thisdataset, one surrogate is trained to predict the energyconsumption of the building i.e. the load for heating andcooling in Watts. For that, the heating/cooling valve ofall 34 rooms, the described weather data as well as thecalculated time features are used, summing up to a totalof 48 input values. In addition to that, one surrogateis trained for each of the 34 controllable rooms of thebuilding. For that, 15 input values are used, includingthe described weather data, the calculated time featuresas well as the heating/cooling valve for the one room forwhich the surrogate is trained. With that, the surrogatesare trained to predict the exact room temperature in °C.
As hyperparameter settings k = 1, 3, 5, 10, 20, 50, 100,200, 500, 1000, 2000 is chosen for the k-Nearest Neigh-bour. For the Random Forest, a batch size of five runs,
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R = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and M = 0.4, 0.5, 0.6, 0.7 arechosen as parameters. The same batch size of five runsis also set for the Genetic Algorithm. As parameters,mutation rates of 0.2 and 0.3, a population size of 100,250 and 500 as well as 50, 100 and 200 generationsare chosen. Additionally, the selector is defined to bethe Proportional Selector with windowing set to true, ascrossover the Subtree Swapping Crossover and as mutatorthe Multi Manipulator are set in HeuristicLab. As settingsfor the symbolic regression, the maximum tree depth isset to 50, the maximum tree length is set to 100 and asgrammer the following operators are allowed: arithmetic(+-*/, avg, min, max), trigonometric (sin, cos, tan),exponential function, logarithm, power functions (square,power, squareroot and root) and the conditional symbolsif-then-else, greater than, less than, and, or, xor andnot. This results in a total of 11 k-Nearest Neighbour, 120Random Forest and 90 Genetic Algorithm surrogates thatare trained for the 34 controllable rooms and the electricalload, summing up to a total of 7735 trained surrogates.
3.4. Evaluation
The evaluation of the trained surrogates is done in a multi-step process. First, the best surrogate for each room andthe building energy consumption is chosen among all al-gorithms and hyperparameter configurations based onthe R² metric for the training test. These 35 surrogates arethen tested on the held-back test set for the year 2021. Thevalues for the R² and the Mean Absolute Error (MAE) met-rics for the training, the training test and the held-backtest as well as the estimated values are extracted fromHeuristicLab. After that, the results are analysed and eval-uated towards their prediction capabilities, the learnedbehaviour and the reduction of the execution time in com-parison to the original IDA ICE simulation model.

The execution time comparison is done by running theIDA ICE simulation model and the surrogates with fourdifferent timespans (31, 90, 181 and 365 days) five timeseach with the held-back test set for 2021 in order to mit-igate possible side effects of other programs running onthe computing device. As computing resource, a LenovoThinkPad P15 Pro with an Intel Core i7vPro 10th Gen and32GB RAM is used. First, the simulations are done directlyin IDA ICE by running the simulation five times for therespective timespan and then reading the duration param-eter provided by the simulation environment. Before beingable to run the surrogates, they are extracted from Heuris-ticLab as C-Code, which is then integrated into a MATLABSimulink simulation model (The Mathworks, 2022). Usingthe code generation functionality provided by MATLAB’sEmbedded Coder toolbox and a slightly adapted versionof the energy management controller training process de-veloped by Kefer et al. (Kefer et al., 2022), a DLL that canbe executed from C#/.NET code, is generated. This DLL isthen run by a Visual Studio 2022 project for five times withthe four timespans described above and with the same

input data as the IDA ICE simulation model. Finally, forevery timespan, the average execution duration is calcu-lated from the five consecutive runs for both, the IDA ICEsimulation model as well as the surrogates DLL.
4. Results and Discussion
This section is split up in four different parts: first, theresults for the surrogates’ prediction capabilities are de-scribed in section 4.1. Then, the behaviour of some of thetrained surrogates is analysed in more detail in section 4.2,followed by the description of the execution speed evalu-ation in section 4.3. Finally, the results are discussed inreference to the proposed contributions in section 4.4.
4.1. Prediction Capabilities
The prediction capabilities of the best 35 trained surro-gates are evaluated based on the R² and Mean AbsoluteError (MAE) metrics for the training, the test during thetraining and also on the held-back test set holding thedata from 2021. For the electric load, the Random Forestwith R = 0.6 and M = 0.5 performed best and achieved anR² of 0.9995 for training, 0.9355 for the training test and0.9180 for the held-back test set. The mean absolute errorshowed a slight overfitting by achieving an error of 22.21Wduring the training and 513.07W respectively 585.16W forthe training test and the held-back test set.The results for the error metrics as well as the best per-forming algorithm for each of the 34 controllable roomsurrogates are shown in table 3. For 27 of these 34 roomsincluding all the office rooms, meeting rooms and com-mon areas also the Random Forest algorithm performsbest. However, the results show a higher overfitting com-pared to the electric load surrogate, which is in this casealready visible when looking at the R² metric. Addition-ally, the results are varying between the different types ofrooms. However, this can be easily explained by looking atthe specific room types where the worst prediction resultsare occurring: Sanitary Rooms, Corridors and Halls as wellas some Meeting rooms. It can be assumed that the tem-peratures of these rooms are harder to predict most likelyjust because there are more manual room temperaturemodifications happening e.g. in form of window openingsdone by the people in the building. Nevertheless, the re-sults are very promising and show, that a maximum andaverage deviation of 0.73°C and 0.36°C respectively, areachieved for the held-back test set of 2021.
4.2. Behaviour Analysis
When analysing the behaviour of the different surrogates,we first take a closer look on the results achieved by theRandom Forest for the prediction of the building load. Pre-dicting the load of a building is generally a challengingtask due to a lot of variability and the nearly unpredictablebehaviour of the people in the building. However, the orig-
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Table 3. The training, test and held-back test set results for all 34 room surrogates trained for this work sorted in decreasing order for R² Test 2021.
Room Best Surrogate R²Training R²Test R²Test 2021 MAE [°C]Training MAE [°C]Test MAE [°C]Test 2021

Staircase Genetic Algorithm (MutProb=0.2,PopSize=500, MaxGens=200) 0.9516 0.9462 0.9583 0.2928 0.3064 0.2949
3rd Floor Corridors&Halls Genetic Algorithm (MutProb=0.2,PopSize=250, MaxGens=200) 0.9234 0.9196 0.9369 0.2685 0.2660 0.2763
3rd Floor Meeting Rooms Random Forest (R=0.6, M=0.6) 0.9983 0.9024 0.9022 0.0143 0.1811 0.19963rd Floor Common Area Random Forest (R=0.5, M=0.7) 0.9971 0.9055 0.8896 0.0222 0.2126 0.24923rd Floor Office 4 Random Forest (R=0.4, M=0.6) 0.9959 0.8918 0.8818 0.0263 0.2038 0.2369Ground Floor Office Random Forest (R=0.7, M=0.5) 0.9993 0.8842 0.8752 0.0133 0.3921 0.40753rd Floor Office 1 Random Forest (R=0.4, M=0.7) 0.9957 0.9070 0.8698 0.0244 0.1700 0.2047Ground Floor Office 1 Random Forest (R=0.4, M=0.7) 0.9967 0.8635 0.8650 0.0328 0.3615 0.3716Basement Laboratories Random Forest (R=0.3, M=0.7) 0.9926 0.9036 0.8548 0.0182 0.0978 0.0996Ground Floor Office 2 Random Forest (R=0.7, M=0.4) 0.9992 0.8601 0.8472 0.0175 0.5352 0.5652Ground Floor Meeting Rooms Random Forest (R=0.5, M=0.5) 0.9975 0.8458 0.8316 0.0264 0.3775 0.41813rd Floor Office Random Forest (R=0.6, M=0.7) 0.9980 0.8630 0.8284 0.0162 0.2507 0.2992Basement Library k-Nearest Neighbour (K=500) 0.9208 0.8367 0.8237 0.2056 0.2615 0.2915Basement Sanitary Rooms Random Forest (R=0.4, M=0.4) 0.9969 0.8281 0.8194 0.0140 0.1816 0.1934Ground Floor Office 3 Random Forest (R=0.8, M=0.4) 0.9994 0.8438 0.8118 0.0104 0.4495 0.51131st Floor Office 4 Random Forest (R=0.6, M=0.7) 0.9959 0.8211 0.8063 0.0224 0.3782 0.4465Ground Floor Office 4 Random Forest (R=0.7, M=0.6) 0.9988 0.8188 0.7895 0.0111 0.3254 0.3781
2nd Floor Corridors&Halls Genetic Algorithm (MutProb=0.3,PopSize=500, MaxGenes=200) 0.7326 0.7172 0.7880 0.2408 0.2342 0.2639
1st Floor Meeting Rooms Random Forest (R=0.6, M=0.5) 0.9978 0.7843 0.7645 0.0176 0.3807 0.4305Ground Floor Corridors&Halls Random Forest (R=0.5, M=0.4) 0.9974 0.7640 0.7556 0.0121 0.2454 0.25591st Floor Office 2 Random Forest (R=0.6, M=0.6) 0.9948 0.7687 0.7501 0.0190 0.3180 0.3548
1st Floor Corridors&Halls Genetic Algorithm (MutProb=0.3,PopSize=100, MaxGens=200) 0.6809 0.6735 0.7455 0.2282 0.2196 0.2463
1st Floor Common Area Random Forest (R=0.8, M=0.5) 0.9979 0.7714 0.7398 0.0099 0.3494 0.40951st Floor Office Random Forest (R=0.8, M=0.5) 0.9990 0.7850 0.7242 0.0091 0.4031 0.48522nd Floor Office Random Forest (R=0.8, M=0.6) 0.9983 0.7698 0.7175 0.0109 0.4333 0.48712nd Floor Office 3 Random Forest (R=0.3, M=0.6) 0.9760 0.7534 0.7157 0.0830 0.4615 0.55342nd Floor Office 1 Random Forest (R=0.6, M=0.6) 0.9921 0.7774 0.7039 0.0231 0.3257 0.3901Ground Floor Sanitary Rooms Random Forest (R=0.8, M=0.4) 0.9994 0.7213 0.7025 0.0025 0.1734 0.20532nd Floor Office 2 Random Forest (R=0.5, M=0.5) 0.9947 0.7355 0.7019 0.0446 0.6580 0.7292Basement General Rooms Random Forest (R=0.4, M=0.6) 0.9939 0.7607 0.6981 0.0385 0.4361 0.50312nd Floor Office 5 Random Forest (R=0.7, M=0.6) 0.9956 0.7057 0.6652 0.0153 0.3564 0.4376Basement Corridors&Halls k-Nearest Neighbour (K=500) 0.8467 0.6435 0.6496 0.1426 0.1988 0.20842nd Floor Meeting Rooms Random Forest (R=0.6, M=0.4) 0.9959 0.6664 0.6268 0.0183 0.3431 0.39911st Floor Sanitary Rooms k-Nearest Neighbour (K=500) 0.7960 0.5790 0.5861 0.1774 0.2525 0.2468

inal load behaviour can be approximated well even thoughthere are some inaccuracies when predicting the consump-tion peaks (figure 4). One reason for that might be thatthe building is relatively well known with a regularly re-occurring behaviour: less load on non-working days andthe transitional periods between summer and winter whilethere is higher load on working days or during summerand winter due to an increased heating and cooling effort.
The best result for the room temperature surrogatestrained with the Random Forest is achieved for the 3rdfloor meeting rooms with a R² on the held-back test setof 0.9022 and a MAE of 0.1996°C. Also the yearly courseof the temperature is matched quite well (figure 5 (a)).In comparison to that, figure 5(b) shows the room wherethe Random Forest achieved the worst results with a R² of0.6268 and a mean absolute error of 0.3991°C on the held-back test set, but still performs better than the two otheralgorithms. When taking a closer look on the temperaturecourse, it becomes obvious that the major temperaturecharacteristics of the room are still covered.

Figure 4. The original and predicted values achieved by the best-performing Random Forest surrogate on the held-back test set for theload of the building.

Taking a closer look on the results shown in table 3, itcan be found that the Genetic Algorithm performed bestin training nearly all Corridors and Halls surrogates andadditionally also in training the surrogate for the stair-case, where the overall best results among all rooms are
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(a) 3rd Floor Meeting Rooms - Best Result

(b) 2nd Floor Meeting Rooms - Worst Result
Figure 5. The temperature course in °C of the two rooms for the held-backtest set, where the Random Forest achieved the best and worst result.

Figure 6. The temperature course in °C of the staircase for the held-backtest set of 2021 achieved by the Genetic Algorithm.

achieved. When plotting the temperatures for the held-back test set for 2021, it is found that all rooms where theGenetic Algorithm performed best, have a very distinctivecurve. As shown in figure 6, it starts with lower temper-atures in the beginning of the year, higher ones duringsummer and then again lower temperatures towards theend of the year, while other rooms do not show these char-acteristics that much (e.g. the rooms shown in figure 5).
Comparing the results on the staircase from the GeneticAlgorithm (figure 6) with the results achieved by the twoother algorithms as shown in figure 7, it can be found thatthe general course of the temperature is learned well by allthree algorithms. However, the k-Nearest Neighbour andthe Random Forest are unable to predict some of the peaksoccurring during the summer and winter time, which theGenetic Algorithm manages to approximate better.

(a) Random Forest - Staircase

(b) k-Nearest Neighbour - Staircase
Figure 7. The temperatures in °C of the Random Forest and the k-NearestNeighbour surrogates on the Staircase for the held-back test set for 2021.

In order to check whether the trained temperature sur-rogates really learned the correlation between the valveand the temperature, e.g. a negative valve means coolingand therefore also lower room temperatures, two artifi-cially alternated datasets are created based on the held-back test set. There, the valves for the rooms are manuallyset to –1 or +1 for the whole year, simulating maximumcooling or heating. These datasets are then applied on thesurrogates just like the original held-back test set. Thebest visible effect can be found for the surrogate trainedwith the Random Forest for the Basement Laboratories (fig-ure 8 (a)). Here, it becomes obvious that setting the valvemanually to cooling drops the average room temperatureby nearly 1°C. When setting it to heating, it does not havesuch a big effect but still increases the room temperatureby 0.2°C on average. Similar, but not as big temperaturechanges have also been found for most of the other rooms.As example, the temperature course of an office on the 2ndfloor is shown in figure 8 (b). Even though these temper-ature changes are not significant, they still indicate thatthe surrogates have learned the right behaviour.
4.3. Execution Speed Comparison
As shown in tables 4 and 5, a massive time reduction canbe achieved when executing the surrogates instead of theoriginal simulation model. On average, simulating one daywith IDA ICE takes 20.2 seconds (not including the buildprocess of the model and the initialization phase), whileit takes only 0.035 seconds to run the surrogates with theDLL. This means, that the original simulation model is up
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(a) Basement Laboratories.

(b) 2nd Floor Office.
Figure 8. The predicted values from the best-performing Random Forestsurrogate using the datasets with the valves set to maximum heating (+1)and cooling (-1) for the year 2021. The mean for the predicted values of theoriginal held-back test set is also plotted.

Table 4. The time measurements in seconds for different simulation time-spans of the year 2021 with the original IDA ICE simulation model.
31 days 90 days 191 days 365 daysRun 1 547 1682 3918 7587Run 2 688 1807 4284 7511Run 3 590 1788 3863 7787Run 4 564 1766 3948 7602Run 5 569 1898 4018 7645Average 591.6 1788.2 4006.2 7626.4

to 664 times slower in execution than the surrogates. Alsothe time needed to train the surrogates is negligible, as thetraining with the k-Nearest Neighbour and the RandomForest only take on average 1min 32s for one run. Only thetraining with the Genetic Algorithms takes some time andon average finishes after approximately six hours.
4.4. Discussion
Summing up, results show that machine learning algo-rithms can learn exact and fast surrogates of a complexsimulation model. Especially training with the RandomForest resulted in good accuracies and the correct be-haviour, while also being able to speed up the execution bya factor of up to 664.
5. Conclusions
In this work a comparison of three different algorithms,two classic machine learning algorithms in form of the k-

Table 5. The time measurements in seconds for different simulation time-spans of the year 2021 with the surrogate models encapsulated in the DLL.
31 days 90 days 191 days 365 daysRun 1 1.168 2.535 6.679 10.658Run 2 1.213 2.563 6.978 12.105Run 3 1.557 2.168 6.841 11.433Run 4 1.532 3.135 6.731 12.122Run 5 1.085 3.057 7.215 11.713Average 1.311 2.692 6.889 11.606

Nearest Neighbour and the Random Forest and a GeneticAlgorithm in combination with Symbolic Regression basedon heuristic optimization, are used to train surrogates ofa complex building simulation model. The building hasa total of five floors and is modelled in the simulation en-vironment IDA ICE. By running the simulation with aninterval of 300 seconds for the four years from 2018 - 2021,the needed input data and the 104 relevant output values(including two different electric loads of the building and34 room temperatures and valves) are logged and stored incsv files for later usage. Using this data, the surrogates aretrained with the three different algorithms and multiplehyperparameter settings. Then, they are compared witheach other for their prediction performance, their correctbehaviour and also the speed up during execution usingthe held-back test set for 2021.
The results show that the Random Forest algorithmperformed best in training the surrogates by achieving theoverall best results for 28 of the 35 trained surrogates. Forthe electric load surrogate, an R² error of 0.918 could beachieved on the held-back test set, which means also amean absolute error of 585.16W. Taking into account, thatpredicting the load of a building is a challenging task ingeneral and that the building has an energy consumptionof 6349.67W on average, this is a good result. The resultsfor the 34 controllable rooms in the building are similarlygood. The best results on the held-back test set for 2021are achieved for the staircase with an R² score of 0.9583and a mean absolute error of 0.295°C. However, especiallyfor the rooms where a lot of unpredictable ventilation dueto manually opened windows is happening, the predictionresults can drop down to an R² score of 0.5851 while stillhaving a mean absolute error of 0.2468°C. The RandomForest also proves to be able to learn the correct behaviourand can also reduce the time of execution by a factor of upto 664 compared to the original simulation with IDA ICE.
The limiting factors of this work are the use of onlythree very specific algorithms for training the surrogatesas well as the used simulation environment. The givensetup in this work limits therefore the comparability tothe other related works, where none used a Random Forestand a Genetic Algorithm as it is done in this work and onlyone used a k-Nearest Neighbour model. Additionally, alsomost of the other works use the EnergyPlus simulation en-vironment while this work uses IDA ICE. Despite that, thesurrogate approach presented in this work is only the firststep in a bigger project setup. For future work, the pre-sented surrogates will be used in the process of training an
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energy management system, which should optimize thedescribed building for minimal energy costs while keepingthe user comfort as high as possible.
6. Funding
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References
Geosphere austria data hub. https://data.hub.zamg.ac.

at/. Accessed: 2023-07-07.(2015). The paris agreement. https://unfccc.int/
process-and-meetings/the-paris-agreement. Ac-cessed: 2023-04-10.AG, E. S. (2022). Ida ice 5.0 beta 22. https://equa.se/de/
ida-ice. Accessed: 2023-04-12.Balduin, S., Westermann, T., and Puiutta, E. (2020). Eval-uating different machine learning techniques as surro-gate for low voltage grids. Energy Informatics, 3(1):1–12.Chen, C., Wang, J., Heo, Y., and Kishore, S. (2013). Mpc-based appliance scheduling for residential building en-ergy management controller. IEEE Transactions on Smart
Grid, 4(3):1401–1410.Chen, X. and Yang, H. (2017). A multi-stage optimizationof passively designed high-rise residential buildings inmultiple building operation scenarios. Applied Energy,206:541–557.Crawley, D., Pedersen, C., Lawrie, L., and Winkelmann,F. (2000). Energyplus: Energy simulation program.
Ashrae Journal, 42:49–56.Eisenhower, B., O’Neill, Z., Narayanan, S., Fonoberov, V. A.,and Mezić, I. (2012). A methodology for meta-modelbased optimization in building energy models. Energy
and Buildings, 47:292–301.environment programme, U. (2021). 2021 globalstatus report for buildings and construction.
https://globalabc.org/sites/default/files/
2021-10/GABC_Buildings-GSR-2021_BOOK.pdf. Ac-cessed: 2023-04-13.Godina, R., Rodrigues, E. M. G., Pouresmaeil, E., Matias, J.C. O., and Catalão, J. P. S. (2018). Model predictive controlhome energy management and optimization strategywith demand response. Applied Sciences, 8(3).International, A. S. (2018). Energy performance of build-ings — energy needs for heating and cooling, internaltemperatures and sensible and latent heatloads: Part 1:Calculation procedures, en iso 52016-1.Jin, Z. L., Liu, Y., and Durlofsky, L. J. (2020). Deep-learning-based surrogate model for reservoir simu-lation with time-varying well controls. Journal of

Petroleum Science and Engineering, 192:107273.Kefer, K., Hanghofer, R., Kefer, P., Stöger, M., Hofer, B.,Affenzeller, M., and Winkler, S. (2022). Simulation-based optimization of residential energy flows usingwhite box modeling by genetic programming. Energy
and Buildings, 258:111829.Liang, Y., Pan, Y., Yuan, X., Jia, W., and Huang, Z. (2022).Surrogate modeling for long-term and high-resolutionprediction of building thermal load with a metric-optimized knn algorithm. Energy and Built Environment.Magnier, L. and Haghighat, F. (2010). Multiobjective opti-mization of building design using trnsys simulations,genetic algorithm, and artificial neural network. Build-
ing and Environment, 45(3):739–746.Morganti, G., Perdon, A., Conte, G., Scaradozzi, D., andBrintrup, A. (2009). Optimising home automation sys-tems: A comparative study on tabu search and evolu-tionary algorithms. In 2009 17th Mediterranean Confer-
ence on Control and Automation, pages 1044–1049. IEEE.Mörth, M. (2022). Thermisch-elektrische modellierungund validierung der komponenten des quartier en-ergiesystems innovation district inffeld. Master Thesis.Salpakari, J. and Lund, P. (2016). Optimal and rule-basedcontrol strategies for energy flexibility in buildings withpv. Applied Energy, 161:425–436.Shin, M. and Haberl, J. S. (2019). Thermal zoning for build-ing hvac design and energy simulation: A literature re-view. Energy and Buildings, 203:109429.Soares, A., Gomes, Á., Antunes, C. H., and Oliveira, C.(2016). A customized evolutionary algorithm for multi-objective management of residential energy resources.
IEEE Transactions on Industrial Informatics, 13(2):492–501.Srinivas, M. and Patnaik, L. M. (1994). Genetic algorithms:A survey. computer, 27(6):17–26.Tabar, R. S., Wärmefjord, K., and Söderberg, R. (2020). Anew surrogate model–based method for individualizedspot welding sequence optimization with respect to ge-ometrical quality. The International Journal of Advanced
Manufacturing Technology, 106:2333–2346.The Mathworks, I. (2022). MATLAB version R2022a. Natick,Massachusetts.und Architektenverein, S. I. (2015). Raumnutzungsdatenfür die energie- und gebäudetechnik, sia 2024:2015.Wagner, S., Beham, A., Kronberger, G., Kommenda, M.,Pitzer, E., Kofler, M., Vonolfen, S., Winkler, S., Dorfer,V., and Affenzeller, M. (2010). Heuristiclab 3.3: A unifiedapproach to metaheuristic optimization. In Actas del sép-
timo congreso español sobre Metaheurísticas, Algoritmos
Evolutivos y Bioinspirados (MAEB’2010), page 8.Westermann, P. and Evins, R. (2021). Using bayesian deeplearning approaches for uncertainty-aware building en-ergy surrogate models. Energy and AI, 3:100039.Wong, S., Wan, K. K., and Lam, T. N. (2010). Artificialneural networks for energy analysis of office buildingswith daylighting. Applied Energy, 87(2):551–557.

https://data.hub.zamg.ac.at/
https://data.hub.zamg.ac.at/
https://unfccc.int/process-and-meetings/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement
https://equa.se/de/ida-ice
https://equa.se/de/ida-ice
https://globalabc.org/sites/default/files/2021-10/GABC_Buildings-GSR-2021_BOOK.pdf
https://globalabc.org/sites/default/files/2021-10/GABC_Buildings-GSR-2021_BOOK.pdf

	Introduction
	Related Work
	Method
	Building Simulation Model
	Data Basis
	Building Simulation Model Surrogates
	Evaluation

	Results and Discussion
	Prediction Capabilities
	Behaviour Analysis
	Execution Speed Comparison
	Discussion

	Conclusions
	Funding

