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Abstract

Intelligent energy management systems can play a vital role in supporting the much needed energy transition. However, in order to
train machine learning models for this task, often very complex and detailed simulation models are needed. This can make the overall
training process very slow or even impossible, which is why using resource efficient surrogates of the original simulation model during
the training can be a possible solution. This work therefore focuses on the training of surrogates of a very detailed building simulation
model using three different algorithms (k-Nearest Neighbour, Random Forest and Genetic Algorithm) and evaluates and compares
them for their prediction capabilities, learned behaviours as well as execution time. Results show that the Random Forest algorithm
achieves the best overall performance for 28 of the 35 surrogates, can learn the expected behavior and improves the execution speed by
a factor of up to 664 compared to the original IDA ICE simulation model.

Keywords: Building Simulation Model Surrogates; Machine Learning; Heuristic Optimization; Energy Management System

1. Introduction

In the last years, climate change has proven to bring a lot
of challenges for the future due to heating up the earth and
by that facilitating enhanced natural disasters like floods
or draughts. In order to push the energy transition, the
world tries to limit the global warming and agreed in the
Paris Agreement (par, 2015) to keep the rise of the global

average temperature well below 2°C. In addition to that,
according to the Global Status Report for Buildings and
Construction (environment programme, 2021) done by
the UN environment program, buildings (residential and
non-residential) are responsible for 27% of the CO2 emis-
sions. Therefore, intelligent systems that can optimize
the energy flows in buildings, so that as much renewable
produced energy as possible is used, become increasingly
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important. Until now, such systems either follow very
simple, rule-based approaches (e.g. (Salpakari and Lund,
2016)) or take a long time during their execution due to
needing a simulation model for predicting the future sys-
tem behaviour (e.g. (Chen et al., 2013; Godina et al., 2018)).

In order to avoid these drawbacks, new approaches
which use heuristic optimization based algorithms have
come up (Morganti et al., 2009; Soares et al., 2016). How-
ever, as the training with such algorithms takes a lot of
iterations and especially when using a simulation model
for the training also a lot of time, it is essential to keep
these simulation models as fast as possible. If the models
are very detailed, thus resulting in longer execution times
per iteration, one option is to replace them with surrogates.
These surrogates should approximate the behaviour of the
simulation model as well as possible while simultaneously
keeping the execution time as small as possible. This is
why in this work three different algorithms are used for the
training of such surrogate models, including the k-Nearest
Neighbour (kNN) as the most basic machine learning al-
gorithm, the Random Forest (RF) as well-known bench-
marking algorithm and also the Genetic Algorithm (GA)
in combination with Symbolic Regression due to its ability
to be extremely performant during the execution.

Therefore, this work contributes to the presented re-
quirements in the following ways:

- In total, 7735 surrogates are trained for 35 outputs of
a detailed building simulation model using three al-
gorithms and different parameter settings: k-Nearest
Neighbour, Random Forest and Genetic Algorithm.

- The surrogates are evaluated and compared with each
other for their ability to match the predicted outputs
with the simulation outputs on a held-back test set.

- The speed up of the execution is tested in comparison
to the original simulation model.

The remaining work is structured as follows: chapter 2
gives an overview over related work, followed by the de-
scription of the method in chapter 3. Chapter 4 gives an
overview on the results and chapter 5 concludes this work
with a short summary and an outlook on future work.

2. Related Work

There are different approaches on how to train surrogates,
and also a wide variety of applications and use cases avail-
able. Examples can be found for spot welding sequence op-
timization, where surrogates are trained using Neural Net-
works (Tabar etal., 2020), the approximation of a reservoir
simulation based on deep learning surrogates (Jin et al.,
2020), or the approximation of the low voltage energy grid
also using artificial neural networks (Balduin et al., 2020).

The use case for this work is the approximation of a
building simulation model in order to speed up the later
training of an energy management system, whose objec-
tive is to optimally control the energy flows in a building in
order to minimize its energy costs. Therefore, this chapter

summarizes mainly related works where surrogates are
trained by machine learning models and used to approx-
imate building simulation models. The used algorithms
range from classic machine learning e.g. by using support
vector machines up to sophisticated deep learning models.

Classic machine learning algorithms used to train the
surrogates are mainly focused on support vector machines
(SVM) and mostly use the simulation environment Ener-
gyPlus (Crawley etal., 2000) as a basis for the training. For
example, already in 2012, Eisenhower et al. (Eisenhower
etal., 2012) simulated an EnergyPlus building model and
then trained a Support Vector Regression model on this
data. This surrogate is then used for the optimization of
the building in regard to a cost function which penalizes
thermal comfort and energy consumption (Eisenhower
etal., 2012). In 2017, Chen and Yang (Chen and Yang, 2017)
published their work on a surrogate-based multi-stage
optimization of passively designed high-rise residential
buildings. Just as Eisenhower et al., also Chen and Yang
use an EnergyPlus simulation model as basis for the surro-
gates, but train different surrogate model types: one based
on multiple linear regression (MLR), one on multivariate
adaptive regression splines (MARS) and one also on sup-
port vector machines. The SVM surrogate achieved the
best prediction performance and is therefore used to opti-
mize the design of the building using the multi-objective
NSGA-II (Non-Dominated Sorting Genetic Algorithm II).
With that, the computational efficiency of the trainings
with the NSGA-II could be greatly improved (Chen and
Yang, 2017). One approach using the k-Nearest Neighbour
algorithm was proposed by Liang et al. in 2022 (Liang
etal., 2022). Using simulations done in EnergyPlus, they
created an electric load database with seven building pa-
rameters as inputs and the respective hourly energy con-
sumption as output. With that, they trained five k-Nearest
Neighbour surrogates using five different spatial metrics
and evaluated them for their ability to predict hourly heat-
ing/cooling loads for hotel, office and retail buildings. With
an accuracy of more than 90%, their approach proved to
achieve very good results (Liang et al., 2022).

Another early work, but one that uses an artificial neu-
ral network (NN) to train surrogates, was presented by
Magnier and Haghighat in 2010 (Magnier and Haghighat,
2010). They use the simulation environment TRNSYS and
validate the created simulation model with measured data.
Once the training of the artificial neural network with the
validated model is done, the prediction results from the
network are also validated. Finally, similar to the work
done by Chen and Yang (Chen and Yang, 2017), also an
NSGA-II is used to optimize the thermal comfort and the
energy consumption in the residential building (Magnier
and Haghighat, 2010). In the same year, Wong, Wan and
Lam (Wong et al., 2010) published their work on an ar-
tificial neural network surrogate based on an EnergyPlus
simulation model. From this simulation model, they ex-
tract weather and time data, the electric load for heating,
cooling, lighting and the total building energy consump-
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Table 1. An overview of the related works presented in chapter 2 for the used algorithms in comparison to this work and ordered by their year of publishing.

. . . Algorithm

Authors Year Simulation Environment KNN SVM RF NN MLR MARS GPM GA
Magnier and Haghighat | 2010 TRNSYS X
Wong et al. 2010 EnergyPlus X
Eisenhower et al. 2012 EnergyPlus X
Chen and Yang 2017 EnergyPlus X X X
Westermann and Evins 2021 | Net-Zero navigator project X X
Liang et al. 2022 EnergyPlus X
Kefer et al. 2023 IDAICE X X X

tion. Using this data, the surrogate model is trained and
tested for its efficiency on four electrical target values with
the Nash-Sutcliffe coefficient. With this approach, the au-
thors achieved excellent prediction power and only small
error rates (Wong et al., 2010). A more recent work which
uses Bayesian Neural Networks to train surrogates was
presented by Westermann and Evins in 2021 (Westermann
and Evins, 2021). In their work, they try to approximate
twelve energy performance metrics of a complex, high
dimensional building using 35 input values. With that,
they try to optimize the building’s energy performance.
In addition, they also train a stochastic variational Gaus-
sian Process model (GPM) as surrogate and compare its
performance to the one trained with the Bayesian Neural
Network and find that both approaches achieved competi-
tive results (Westermann and Evins, 2021).

Summing up and as shown in table 1, it can be stated
that there are similar approaches already available in lit-
erature using classic machine learning (Eisenhower et al.,
2012; Chen and Yang, 2017; Liang et al., 2022). Except for
one work that uses the k-Nearest Neighbour from Liang
etal. (Liang et al., 2022) in a similar way as it is done in
this work, the related works mainly focus on the usage of
support vector machines, which is not done in this work
due to performance reasons during the training. Despite
that, to the best of our knowledge, there are no previous
works using a Random Forest algorithm and a Genetic Al-
gorithm to train building simulation model surrogates. In
literature, heuristic optimization algorithms are mainly
used as the optimization algorithm in a surrogate assisted
optimization approach, but not to train the surrogates
themselves as it is done in this work. This work is also not
training neural networks to create surrogates again due
to performance reasons and uses an IDA ICE simulation
model as a basis instead of an EnergyPlus model. This work
also focuses more on a comparison of the three different
algorithms used to create the surrogates using error met-
rics, a behaviour analysis and by measuring the execution
time of the final surrogates.

3. Method

In order to create the surrogates, first all necessary data is
extracted from the simulation model (section 3.1) by run-
ning it for a total of four years starting at the beginning
of 2018. During that process, the input data used for the
simulation model as well as all relevant output values are

recorded and stored in csv files for later usage. This data ba-
sis and the additional features calculated for the surrogate
trainings are described in more detail in section 3.2. Using
this data, the surrogates are trained with three different
algorithms (k-Nearest Neighbour, Random Forest and Ge-
netic Algorithm) in the optimization framework Heuristi-
cLab (Wagner et al., 2010) with multiple hyperparameter
settings (section 3.3). Finally, the trained surrogates are
evaluated for their prediction capabilities, behaviour and
time saving capabilities as explained in section 3.4.

3.1. Building Simulation Model

The building in focus is located in the Innovation District
Inffeld at Inffeldgasse 19, Graz, Austria (see figure 1). It
was built in 2012 and is heated and cooled by two heat
pumps and a coupled geothermal probe field. Heating and
cooling are provided by underfloor heating and three cen-
tral ventilation systems. The net floor area (2 216.84 m?)
is divided into the following uses: 43% offices, 26% circu-
lation areas, 8% storage, 7% recreation rooms, 5% lecture
halls and libraries, 5% technical facilities, 4% sanitary
and other areas and 3% laboratory and workshop. The
sanitary and technical areas are connected to an exhaust
air system. In addition, the circulation and sanitary ar-
eas are continuously supplied with fresh air by a central
ventilation system. Table 2 shows the physical properties
of the building envelope, as well as the net volume (NV),
area/volume ratio (A/V), window/area ratio (W/A) and the
infiltration rate at a pressure difference of 50 Pa (nso) as
input variables to the simulation model.

Based on the described parameters, a multi-zone sim-
ulation model was created in the IDA ICE simulation envi-
ronment (AG, 2022) and calibrated using measurement
data. The thermal zoning of the model is based on ONORM
EN ISO 52016-1 (International, 2018) and considers the
influencing factors solar radiation, orientation, occupancy,
schedules and function as identified by Shin et al (Shin
and Haberl, 2019). The use profiles are based on SIA
2024:2015 (und Architektenverein, 2015). The validation
and calibration processes are done by evaluating the devia-
tions of the simulation model from the real system. In addi-
tion, the annual heating and cooling energy in kWh/(m?xa)
and the monthly heating and cooling energy in kWh/m? of
the simulated and the real system are compared.

The year 2019 is used for the validation, as full occu-
pancy (pre-corona) can still be assumed. The first step is
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Table 2. Properties of the simulation model in terms of building physics.

Building Envelope Area U-Value UA-Value Share NV AV W/A n50
Designation [m?2] [W/(m2K)] [W/K] [%] [m3] [m2/m3] [%] [1/h]
Walls in contact with air 907,46 0,2022 183,51  18,65%
Walls in contact with the ground 400,87 0,2092 83,85 8,52%
Roof 515,94 0,1389 71,66 7,28%
Floor in contact with the ground 562,47 0,1144 64,34 6,54%
Glazing 552,31 0,9605 530,51  53,90%
Thermal bridging - - 50,34 5,11%
Total 2939,05 0,3349 984,21 100% | 7954 0,3695  18,79% 1,2

T

Figure 1. Inffeldgasse 19 in its real state in the picture on the right and the
simulation model in IDA ICE on the left (Morth, 2022)

to define the parameters and their bandwidths to adapt
the simulation to reality and reduce the “performance
gap”. For the calibration process, energy transmittance (g-
value), infiltration (nso), thermal bridging coefficient (y-
value) and internal heat loads for occupancy, lighting, and
equipment, and finally the efficiencies of the latent heat
exchangers in the ventilation system are used. For that,
the released parameters are adjusted, and the deviation is
reduced with the help of Automatic Multi-Objective Opti-
mization (AutoMOO), which is an internal optimization
algorithm of IDA ICE. These steps are repeated until the re-
quirements for the model are met or a maximum number
of iterations is reached. A very good agreement of the cal-
ibrated simulation results with reality could be achieved
with that process. From November to March there is a max-
imum relative deviation of -3.4% (-0.3 kWh/m?). Large
relative deviations occur only in the transitional months,
for example up to 62.7% (0.4 kWh/m?) in September. A
detailed description of the modelling method and the full
set of boundary conditions and results can be found in the
master thesis of Michael Morth (Morth, 2022).

3.2. Data Basis

Asdatabasis, four full years (2018-2021) are exported from
the simulation model by running it in the IDA ICE (AG,
2022) simulation environment with an interval of 300 sec-
onds in open-loop, i.e. no thermal controllers active, with
an amplitude modulated pseudo-random bit sequences

(APRBS), where the valve position was constant for six
hours at a time. During the run, the input data as well as
104 relevant output values are logged and exported to a csv
file once the simulation is finished. As input data for the
simulation, weather data for the city of Graz, Austria, is
fetched from the Geosphere data hub (zam) and contains
the ambient temperature in °C (figure 2 (a)), the relative
humidity (figure 2 (b)), wind speed in x and y direction
(figure 2 (c)) and the solar irradiance values direct normal,
diffuse horizontal and global horizontal irradiance (fig-
ure 2 (d)). The output values relevant for the surrogate
trainings include the timestamp, the electric load for heat-
ing and cooling (figure 3 (a)) and the room temperatures
(figure 3 (b)) as well as the valves for heating and cooling
for each of the 34 controllable rooms in the building.

As preprocessing steps, the valves for heating and cool-
ing are combined into one value with a range of [—1;1]
(figure 3 (c)), where positive values denote heating and
negative values denote cooling. Then, the two output val-
ues for the electric load for heating and cooling of the build-
ing are combined by summing them up, which results in
one electric load value. Based on the timestamp, seven
additional time-based features are calculated for the train-
ing of the surrogates: the hour of the day, the day of the
week as well as the month of the year each in sine/cosine
representations (figure 3 (c)) so that the cyclic nature of
these values is reflected appropriately, and a boolean indi-
cating whether it is a working day (represented as 1) or a
non-working day like saturday, sunday or public holiday in
Styria, Austria (represented as 0). The sine and cosine rep-
resentations are calculated as shown in equations 1and 2.

y = sin(2 * t x ParameterValue/maxValueOfParam) (1)

y = cos(2 = 7 » ParameterValue/maxValueOfParam) (2)

Once the preprocessing is finished, the full four year
dataset is split up into two separate ones. The first one
includes the first three years of the data from 2018 until
the end of 2020. It is used for the training of the surrogates
by using the first two years directly as training data and the
year 2020 for testing. The remaining year 2021 is used as
held-back test set for the final evaluation of the surrogates
as described in section 3.4.
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Figure 2. The weather data used as input for the simulation of the IDA ICE
building model for 2018 and 2019.

3.3. Building Simulation Model Surrogates

The training of the simulation model surrogates is done
with three different algorithms, all implemented in the

optimization framework HeuristicLab (Wagner et al.,

2010), and include the k-Nearest Neighbour, the Random
Forest and the standard Genetic Algorithm (Srinivas and
Patnaik, 1994). The years 2018 and 2019 of the dataset
described in section 3.2 are used as training data and
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(c) The valve for the room ground floor corridors and halls
as well as the sine and cosine representation of the month
for the years 2018 and 2019.

Figure 3. An example of a room temperature, the building load for heating
and cooling and the room valve for the training data years 2018 and 2019.

2020 is used as test data during the training. Using this
dataset, one surrogate is trained to predict the energy
consumption of the building i.e. the load for heating and
cooling in Watts. For that, the heating/cooling valve of
all 34 rooms, the described weather data as well as the
calculated time features are used, summing up to a total
of 48 input values. In addition to that, one surrogate
is trained for each of the 34 controllable rooms of the
building. For that, 15 input values are used, including
the described weather data, the calculated time features
as well as the heating/cooling valve for the one room for
which the surrogate is trained. With that, the surrogates
are trained to predict the exact room temperature in °C.

As hyperparameter settings k = 1,3,5,10,20,50,100,
200, 500,1000, 2000 is chosen for the k-Nearest Neigh-
bour. For the Random Forest, a batch size of five runs,
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R = 03,0.4,05,0.6,0.7,0.8 and M = 0.4,0.5,0.6,0.7 are
chosen as parameters. The same batch size of five runs
is also set for the Genetic Algorithm. As parameters,
mutation rates of 0.2 and 0.3, a population size of 100,
250 and 500 as well as 50, 100 and 200 generations
are chosen. Additionally, the selector is defined to be
the Proportional Selector with windowing set to true, as
crossover the Subtree Swapping Crossover and as mutator
the Multi Manipulator are set in HeuristicLab. As settings
for the symbolic regression, the maximum tree depth is
set to 50, the maximum tree length is set to 100 and as
grammer the following operators are allowed: arithmetic
(+-*/, avg, min, max), trigonometric (sin, cos, tan),
exponential function, logarithm, power functions (square,
power, squareroot and root) and the conditional symbols
if-then-else, greater than, less than, and, or, xor and
not. This results in a total of 11 k-Nearest Neighbour, 120
Random Forest and 90 Genetic Algorithm surrogates that
are trained for the 34 controllable rooms and the electrical
load, summing up to a total of 7735 trained surrogates.

3.4. Evaluation

The evaluation of the trained surrogates is done in a multi-
step process. First, the best surrogate for each room and
the building energy consumption is chosen among all al-
gorithms and hyperparameter configurations based on
the R2 metric for the training test. These 35 surrogates are
then tested on the held-back test set for the year 2021. The
values for the R2? and the Mean Absolute Error (MAE) met-
rics for the training, the training test and the held-back
test as well as the estimated values are extracted from
HeuristicLab. After that, the results are analysed and eval-
uated towards their prediction capabilities, the learned
behaviour and the reduction of the execution time in com-
parison to the original IDA ICE simulation model.

The execution time comparison is done by running the
IDA ICE simulation model and the surrogates with four
different timespans (31, 90, 181 and 365 days) five times
each with the held-back test set for 2021 in order to mit-
igate possible side effects of other programs running on
the computing device. As computing resource, a Lenovo
ThinkPad P15 Pro with an Intel Core i7vPro 10th Gen and
32GB RAM is used. First, the simulations are done directly
in IDA ICE by running the simulation five times for the
respective timespan and then reading the duration param-
eter provided by the simulation environment. Before being
able to run the surrogates, they are extracted from Heuris-
ticLab as C-Code, which is then integrated into a MATLAB
Simulink simulation model (The Mathworks, 2022). Using
the code generation functionality provided by MATLAB’s
Embedded Coder toolbox and a slightly adapted version
of the energy management controller training process de-
veloped by Kefer et al. (Kefer et al., 2022), a DLL that can
be executed from C#/.NET code, is generated. This DLL is
then run by a Visual Studio 2022 project for five times with
the four timespans described above and with the same

input data as the IDA ICE simulation model. Finally, for
every timespan, the average execution duration is calcu-
lated from the five consecutive runs for both, the IDA ICE
simulation model as well as the surrogates DLL.

4. Results and Discussion

This section is split up in four different parts: first, the
results for the surrogates’ prediction capabilities are de-
scribed in section 4.1. Then, the behaviour of some of the
trained surrogates is analysed in more detail in section 4.2,
followed by the description of the execution speed evalu-
ation in section 4.3. Finally, the results are discussed in
reference to the proposed contributions in section 4.4.

4.1. Prediction Capabilities

The prediction capabilities of the best 35 trained surro-
gates are evaluated based on the R? and Mean Absolute
Error (MAE) metrics for the training, the test during the
training and also on the held-back test set holding the
data from 2021. For the electric load, the Random Forest
with R = 0.6 and M = 0.5 performed best and achieved an
R? of 0.9995 for training, 0.9355 for the training test and
0.9180 for the held-back test set. The mean absolute error
showed a slight overfitting by achieving an error of 22.21W
during the training and 513.07W respectively 585.16W for
the training test and the held-back test set.

The results for the error metrics as well as the best per-
forming algorithm for each of the 34 controllable room
surrogates are shown in table 3. For 27 of these 34 rooms
including all the office rooms, meeting rooms and com-
mon areas also the Random Forest algorithm performs
best. However, the results show a higher overfitting com-
pared to the electric load surrogate, which is in this case
already visible when looking at the R? metric. Addition-
ally, the results are varying between the different types of
rooms. However, this can be easily explained by looking at
the specific room types where the worst prediction results
are occurring: Sanitary Rooms, Corridors and Halls as well
as some Meeting rooms. It can be assumed that the tem-
peratures of these rooms are harder to predict most likely
just because there are more manual room temperature
modifications happening e.g. in form of window openings
done by the people in the building. Nevertheless, the re-
sults are very promising and show, that a maximum and
average deviation of 0.73°C and 0.36°C respectively, are
achieved for the held-back test set of 2021.

4.2. Behaviour Analysis

When analysing the behaviour of the different surrogates,
we first take a closer look on the results achieved by the
Random Forest for the prediction of the building load. Pre-
dicting the load of a building is generally a challenging
task due to a lot of variability and the nearly unpredictable
behaviour of the people in the building. However, the orig-
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Table 3. The training, test and held-back test set results for all 34 room surrogates trained for this work sorted in decreasing order for R? Test 2021.

Room Best Surrogate R* R? R? MAE[°C)  MAE[*C] ~ MAE [°C]
Training Test Test2021 | Training Test Test 2021
. Genetic Algorithm (MutProb=0.2,
Staircase PopSize=500, MaxGens=200) 0.9516 0.9462 0.9583 0.2928 0.3064 0.2949
. Genetic Algorithm (MutProb=0.2,
3rd Floor Corridors&Halls PopSize=250, MaxGens=200) 0.9234 0.9196 0.9369 0.2685 0.2660 0.2763
3rd Floor Meeting Rooms Random Forest (R=0.6, M=0.6) 0.9983 0.9024 0.9022 0.0143 0.1811 0.1996
3rd Floor Common Area Random Forest (R=0.5, M=0.7) 0.9971 0.9055 0.8896 0.0222 0.2126 0.2492
3rd Floor Office 4 Random Forest (R=0.4, M=0.6) 0.9959 0.8918 0.8818 0.0263 0.2038 0.2369
Ground Floor Office Random Forest (R=0.7, M=0.5) 0.9993 0.8842 0.8752 0.0133 0.3921 0.4075
3rd Floor Office 1 Random Forest (R=0.4, M=0.7) 0.9957 0.9070 0.8698 0.0244, 0.1700 0.2047
Ground Floor Office 1 Random Forest (R=0.4, M=0.7) 0.9967 0.8635 0.8650 0.0328 0.3615 0.3716
Basement Laboratories Random Forest (R=0.3, M=0.7) 0.9926 0.9036 0.8548 0.0182 0.0978 0.0996
Ground Floor Office 2 Random Forest (R=0.7, M=0.4) 0.9992 0.8601 0.8472 0.0175 0.5352 0.5652
Ground Floor Meeting Rooms  Random Forest (R=0.5, M=0.5) 0.9975 0.8458 0.8316 0.0264 0.3775 0.4181
3rd Floor Office Random Forest (R=0.6, M=0.7) 0.9980 0.8630 0.8284 0.0162 0.2507 0.2992
Basement Library k-Nearest Neighbour (K=500) 0.9208 0.8367 0.8237 0.2056 0.2615 0.2915
Basement Sanitary Rooms Random Forest (R=0.4, M=0.4) 0.9969 0.8281 0.8194 0.0140 0.1816 0.1934
Ground Floor Office 3 Random Forest (R=0.8, M=0.4) 0.9994 0.8438 0.8118 0.0104 0.4495 0.5113
1st Floor Office 4 Random Forest (R=0.6, M=0.7) 0.9959 0.8211 0.8063 0.0224, 0.3782 0.4465
Ground Floor Office 4 Random Forest (R=0.7, M=0.6) 0.9988 0.8188 0.7895 0.0111 0.3254 0.3781
. Genetic Algorithm (MutProb=0.3,
2nd Floor Corridors&Halls PopSize=500, MaxGenes=200) 0.7326 0.7172 0.7880 0.2408 0.2342 0.2639
1st Floor Meeting Rooms Random Forest (R=0.6, M=0.5) 0.9978 0.7843 0.7645 0.0176 0.3807 0.4305
Ground Floor Corridors&Halls ~ Random Forest (R=0.5, M=0.4) 0.9974 0.7640 0.7556 0.0121 0.2454 0.2559
1st Floor Office 2 Random Forest (R=0.6, M=0.6) 0.9948 0.7687 0.7501 0.0190 0.3180 0.3548
. Genetic Algorithm (MutProb=0.3,
1st Floor Corridors&Halls PopSize=100, MaxGens=200) 0.6809 0.6735 0.7455 0.2282 0.2196 0.2463
1st Floor Common Area Random Forest (R=0.8, M=0.5) 0.9979 0.7714 0.7398 0.0099 03494 0.4095
1st Floor Office Random Forest (R=0.8, M=0.5) 0.9990 0.7850 0.7242 0.0091 0.4031 0.4852
2nd Floor Office Random Forest (R=0.8, M=0.6) 0.9983 0.7698 0.7175 0.0109 0.4333 0.4871
2nd Floor Office 3 Random Forest (R=0.3, M=0.6) 0.9760 0.7534 0.7157 0.0830 0.4615 0.5534
2nd Floor Office 1 Random Forest (R=0.6, M=0.6) 0.9921 0.7774 0.7039 0.0231 0.3257 0.3901
Ground Floor Sanitary Rooms  Random Forest (R=0.8, M=0.4) 0.9994 0.7213 0.7025 0.0025 0.1734 0.2053
2nd Floor Office 2 Random Forest (R=0.5, M=0.5) 0.9947 0.7355 0.7019 0.0446 0.6580 0.7292
Basement General Rooms Random Forest (R=0.4, M=0.6) 0.9939 0.7607 0.6981 0.0385 0.4361 0.5031
2nd Floor Office 5 Random Forest (R=0.7, M=0.6) 0.9956 0.7057 0.6652 0.0153 0.3564 0.4376
Basement Corridors&Halls k-Nearest Neighbour (K=500) 0.8467 0.6435 0.6496 0.1426 0.1988 0.2084
2nd Floor Meeting Rooms Random Forest (R=0.6, M=0.4) 0.9959 0.6664 0.6268 0.0183 0.3431 0.3991
1st Floor Sanitary Rooms k-Nearest Neighbour (K=500) 0.7960 0.5790 0.5861 0.1774 0.2525 0.2468

inal load behaviour can be approximated well even though
there are some inaccuracies when predicting the consump-
tion peaks (figure 4). One reason for that might be that
the building is relatively well known with a regularly re-
occurring behaviour: less load on non-working days and
the transitional periods between summer and winter while
there is higher load on working days or during summer
and winter due to an increased heating and cooling effort.

The best result for the room temperature surrogates
trained with the Random Forest is achieved for the 3rd
floor meeting rooms with a R? on the held-back test set
of 0.9022 and a MAE of 0.1996°C. Also the yearly course
of the temperature is matched quite well (figure 5 (a)).
In comparison to that, figure 5(b) shows the room where
the Random Forest achieved the worst results with a R? of
0.6268 and a mean absolute error of 0.3991°C on the held-
back test set, but still performs better than the two other
algorithms. When taking a closer look on the temperature
course, it becomes obvious that the major temperature
characteristics of the room are still covered.

—— Original Load
Predicted Load

Figure 4. The original and predicted values achieved by the best-
performing Random Forest surrogate on the held-back test set for the
load of the building.

Taking a closer look on the results shown in table 3, it
can be found that the Genetic Algorithm performed best
in training nearly all Corridors and Halls surrogates and
additionally also in training the surrogate for the stair-
case, where the overall best results among all rooms are
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Figure 5. The temperature course in °C of the two rooms for the held-back
test set, where the Random Forest achieved the best and worst result.
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Figure 6. The temperature course in °C of the staircase for the held-back
test set of 2021 achieved by the Genetic Algorithm.

achieved. When plotting the temperatures for the held-
back test set for 2021, it is found that all rooms where the
Genetic Algorithm performed best, have a very distinctive
curve. As shown in figure 6, it starts with lower temper-
atures in the beginning of the year, higher ones during
summer and then again lower temperatures towards the
end of the year, while other rooms do not show these char-
acteristics that much (e.g. the rooms shown in figure 5).

Comparing the results on the staircase from the Genetic
Algorithm (figure 6) with the results achieved by the two
other algorithms as shown in figure 7, it can be found that
the general course of the temperature is learned well by all
three algorithms. However, the k-Nearest Neighbour and
the Random Forest are unable to predict some of the peaks
occurring during the summer and winter time, which the
Genetic Algorithm manages to approximate better.
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(b) k-Nearest Neighbour - Staircase

Figure 7. The temperatures in °C of the Random Forest and the k-Nearest
Neighbour surrogates on the Staircase for the held-back test set for 2021.

In order to check whether the trained temperature sur-
rogates really learned the correlation between the valve
and the temperature, e.g. a negative valve means cooling
and therefore also lower room temperatures, two artifi-
cially alternated datasets are created based on the held-
back test set. There, the valves for the rooms are manually
set to —1 or +1 for the whole year, simulating maximum
cooling or heating. These datasets are then applied on the
surrogates just like the original held-back test set. The
best visible effect can be found for the surrogate trained
with the Random Forest for the Basement Laboratories (fig-
ure 8 (a)). Here, it becomes obvious that setting the valve
manually to cooling drops the average room temperature
by nearly 1°C. When setting it to heating, it does not have
such a big effect but still increases the room temperature
by 0.2°C on average. Similar, but not as big temperature
changes have also been found for most of the other rooms.
As example, the temperature course of an office on the 2nd
floor is shown in figure 8 (b). Even though these temper-
ature changes are not significant, they still indicate that
the surrogates have learned the right behaviour.

4.3. Execution Speed Comparison

As shown in tables 4 and 5, a massive time reduction can
be achieved when executing the surrogates instead of the
original simulation model. On average, simulating one day
with IDA ICE takes 20.2 seconds (not including the build
process of the model and the initialization phase), while
it takes only 0.035 seconds to run the surrogates with the
DLL. This means, that the original simulation model is up
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Figure 8. The predicted values from the best-performing Random Forest
surrogate using the datasets with the valves set to maximum heating (+1)
and cooling (-1) for the year 2021. The mean for the predicted values of the
original held-back test set is also plotted.

Table 4. The time measurements in seconds for different simulation time-
spans of the year 2021 with the original IDA ICE simulation model.

31days 9o0days 191days 365 days
Runi 547 1682 3918 7587
Run 2 688 1807 4284, 7511
Run3 590 1788 3863 7787
Run 4 564 1766 3948 7602
Runs 569 1898 4018 7645
Average 591.6 1788.2 4006.2 7626.4

to 664 times slower in execution than the surrogates. Also
the time needed to train the surrogates is negligible, as the
training with the k-Nearest Neighbour and the Random
Forest only take on average 1min 32s for one run. Only the
training with the Genetic Algorithms takes some time and
on average finishes after approximately six hours.

4.4,. Discussion

Summing up, results show that machine learning algo-
rithms can learn exact and fast surrogates of a complex
simulation model. Especially training with the Random
Forest resulted in good accuracies and the correct be-
haviour, while also being able to speed up the execution by
a factor of up to 664.

5. Conclusions

In this work a comparison of three different algorithms,
two classic machine learning algorithms in form of the k-

Keferetal. |

Table 5. The time measurements in seconds for different simulation time-
spans of the year 2021 with the surrogate models encapsulated in the DLL.

3idays 9odays 191days 365days
Run1 1.168 2.535 6.679 10.658
Run 2 1.213 2.563 6.978 12.105
Run3 1.557 2.168 6.841 11.433
Run 4 1.532 3.135 6.731 12.122
Run 5 1.085 3.057 7.215 11.713
Average 1311 2.692 6.889 11.606

Nearest Neighbour and the Random Forest and a Genetic
Algorithm in combination with Symbolic Regression based
on heuristic optimization, are used to train surrogates of
a complex building simulation model. The building has
a total of five floors and is modelled in the simulation en-
vironment IDA ICE. By running the simulation with an
interval of 300 seconds for the four years from 2018 - 2021,
the needed input data and the 104 relevant output values
(including two different electric loads of the building and
34 room temperatures and valves) are logged and stored in
csv files for later usage. Using this data, the surrogates are
trained with the three different algorithms and multiple
hyperparameter settings. Then, they are compared with
each other for their prediction performance, their correct
behaviour and also the speed up during execution using
the held-back test set for 2021.

The results show that the Random Forest algorithm
performed best in training the surrogates by achieving the
overall best results for 28 of the 35 trained surrogates. For
the electric load surrogate, an R2 error of 0.918 could be
achieved on the held-back test set, which means also a
mean absolute error of 585.16W. Taking into account, that
predicting the load of a building is a challenging task in
general and that the building has an energy consumption
of 6349.67W on average, this is a good result. The results
for the 34 controllable rooms in the building are similarly
good. The best results on the held-back test set for 2021
are achieved for the staircase with an R2 score of 0.9583
and a mean absolute error of 0.295°C. However, especially
for the rooms where a lot of unpredictable ventilation due
to manually opened windows is happening, the prediction
results can drop down to an R? score of 0.5851 while still
having a mean absolute error of 0.2468°C. The Random
Forest also proves to be able to learn the correct behaviour
and can also reduce the time of execution by a factor of up
to 664 compared to the original simulation with IDA ICE.

The limiting factors of this work are the use of only
three very specific algorithms for training the surrogates
as well as the used simulation environment. The given
setup in this work limits therefore the comparability to
the other related works, where none used a Random Forest
and a Genetic Algorithm as it is done in this work and only
one used a k-Nearest Neighbour model. Additionally, also
most of the other works use the EnergyPlus simulation en-
vironment while this work uses IDA ICE. Despite that, the
surrogate approach presented in this work is only the first
step in a bigger project setup. For future work, the pre-
sented surrogates will be used in the process of training an
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energy management system, which should optimize the
described building for minimal energy costs while keeping
the user comfort as high as possible.

6. Funding

The research leading to these results has received funding
from the Austrian Climate and Energy Fund, in the frame-
work of the RTI-initiative “Flagship region Energy” un-
der Grant No. 880792 (UserGRIDs - User-Centered Smart
Control and Planning of Sustainable Microgrids), in coop-
eration with Green Energy Lab, an innovation laboratory
for green energy.
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