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Abstract 
The potential of Digital Twins (DT) to forecast the behaviour of Gas Turbines (GT) and optimize their operations and useful 
components lives has become increasingly recognized. Cyber-Physical systems (CPS) and Big Data Analytics tools have enabled 
the Electric Power Research Institute's model to predict future performance trends and assist in power management decisions. 
This paper proposes a novel hybrid (physics-empirical) model to represent the thermodynamic and physical characteristics of 
gas turbines. The physics component replicates the geometrical designs of the compressor, combustor, and expander, while the 
empirical component contains GT historical degradation and operational data. The model utilizes thermodynamic relationships 
and correlations to accurately simulate the performance of the gas turbine and predict future deterioration effects. The 
proposed model is distinctive in its ability to accurately forecast the decrease in performance of the GT due to a particular 
degradation mechanism of a selected row (rotating or stationary), within a specified operating period. Our hybrid approach 
utilizes real-world data sets to provide accurate deterioration data, enabling better power planning and optimization of the gas 
turbine’s useful life. Using this model, it is possible to perform cause-effect analysis, making it ideal for failure investigations 
and troubleshooting scenarios. 
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1. Introduction

Gas Turbine (GT) based plants (mainly consisting in Gas 
Steam Combined Cycle plants, GSCC) are playing an 
important role in electric systems. Such plants are 
characterized by a quite good operational flexibility, a 
satisfactory maintainability, relatively low capital costs 
and really high efficiency, which altogether lead to a 
competitive electricity production cost (Cerri, Borghetti 
& Salvini, 2005). 

Under the ongoing global energy transition, GT based 
plants are facing new modes of operation.  
In the recent past, it was common for operations to 

maintain a nearly constant high-level load for 
extended periods of time. The increasingly penetration 
of renewable energy sources (RES) contributes 
significantly to the reduction of CO2 emission and to 
the sustainability of the overall energy system 
(Bossman, Barberi & Fournié, 2018). Conversely, the 
intermittency and the uncertainty in predicting RES 
availability pose relevant issues in the management of 
electric grids. The production of RES (particularly 
wind and solar) is inherently independent from the 
electricity demand. As a result, in order to reliably 
meet the load requirements over time, the production 
from thermo-electric and hydro plants has to be 
scheduled accordingly. Therefore, reliable fossil fuel-
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powered generating plants, such as GT based ones, are 
required to quickly provide flexible back-up and/or 
reserve power. This new operation mode implies huge 
and fast load variations, more frequent peak and 
reduced load operations and a large number of start-
up and shut down (Salvini, 2018; Farhat & Salvini 
2022).  

Such an operation modes lead to the accelerated 
progression of various deterioration phenomena 
which typically occur inside a GT (creep, fatigue, 
erosion, fouling and so on). These phenomena have a 
profound impact on both the lifespan of gas turbine 
components and their performance levels (output 
power and efficiency). In relation to the latter point, 
the mentioned phenomena result in the alteration of 
the shape and quality of surfaces in contact with the 
working fluid (i.e. the compressor and expander 
moving and stationary blades). Consequently, the 
performance of the gas turbine is adversely affected in 
terms of its ability to exchange work, process mass 
flow and extent of energy dissipation phenomena. 

The application of Digital Twins (DT) to GTs has the 
potential to revolutionize how these systems are 
monitored and maintained. By applying DT, such as 
demonstrated in (Lim et al 2021), operators can 
continually assess the system's performance and 
address any potential issues before they arise (e.g. 
diagnosis and prognosis). Furthermore, DT can be used 
to accurately forecast the future degradation of GT 
components and performance.   

The methodology proposed here has been developed by 
the Fluid Machinery and Conversion Energy Research 
Group of Roma Tre University (Cerri, Borghetti & 
Salvini, 2005, 2006a and 2006b; Cerri et al 2011; Cerri, 
Mazzoni & Salvini 2013; Giovannelli, Tamasi & Salvini, 
2019). The GT model is based on a modular approach, 
each module representing a GT plant component. Each 
component module contains suitable deterioration 
coefficients which allow the component model to 
reproduce the actual component behavior in terms of 
work exchange, energy losses and effective flow 
functions. 

The modular methodology makes use of demonstrated 
GT models and historical data. The latter are 
characterised and analysed for possible correlations 
between the deterioration coefficients and physical 
changes, and in terms of GT operating history (number 
of hours, starts, etc.). 

The structure of this paper is as follows. Chapter 2 
provides a comprehensive overview of the current 
state of the art regarding DTs, with specific emphasis 
on their applications in the industry and energy 
sectors. Chapter 3 (Material and Methods) elaborates 
on the detailed methodology proposed for developing 
DT models of gas turbines. In Chapter 4, several 
application cases are presented and discussed. Lastly, 
Chapter 5 summarizes the main conclusions drawn 
from the research work. 

2. State of the art

The current state of literature on DTs has been 
thoroughly examined, with a focus on their integration 
in the energy sector and decision making processes. 
Notable works such as by (Yu et al 2022; Granacher et al 
2022) have been reviewed to gain insights into the 
application and benefits of digital twins. (Yu et al 2022) 
provide a comprehensive description of digital twins, 
including a brief historical overview tracing their 
evolution since their inception in 1970. They specifically 
highlight the most prominent areas of digital twin 
research, prioritizing manufacturing processes, 
buildings and energy. The review emphasizes the urgent 
need for further research and practical applications of  
DTs, particularly within the manufacturing and energy 
industries. The aim is to optimize energy efficiency, 
facilitate decarbonization, and effectively address the 
challenges associated with scaling and covering the 
entire life cycle of assets.  

(Granacher et al 2022) conducted research on the 
integration of digital twins in the superstructure 
optimization process. Their findings demonstrate that 
integrating digital twins significantly enhance the 
decision-making process. By considering the 
preferences and needs of decision makers throughout 
the solution synthesis and exploration, meaningful 
solutions can be generated for complex engineering 
applications. (Granacher et al 2022) introduce a digital 
twin framework specifically designed for process and 
energy system design. This framework translates the 
needs and preferences of decision makers into an 
optimization-based model, facilitating the generation 
of meaningful solutions. To demonstrate its 
effectiveness, the method is applied to integrate 
biorefinery concepts into a typical Kraft pulp mill. 
Multiple solutions are successfully derived, aligning 
with the decision maker's preferences and showcasing 
different system configurations. This showcases the 
capacity of digital twins to enable strategic solution 
generation and holistic exploration of complex 
optimization problems 

(Hickey, Gachon & Cosgrove, 2022) researched the 
application of digital twins in process and project 
management. They highlight the potential benefits of 
utilizing digital twin technology in these domains, such 
as enhancing project management, improving 
communication, and optimizing processes. The authors 
provide an example of an ongoing plating line project 
that has shown promising initial progress.  

(Cimino, Gnoni, Longo & La Rosa, 2022) propose a 
methodology based on digital twins to support effective 
design of industrial production lines. They emphasize 
guidelines that offer insights into how various design 
parameters impact production line performance. The 
authors provide recommendations for maximizing 
productivity and utilization while taking into account 
factors such as the number of operators and raw 
material metal sheets. Additionally, the authors propose 
classifying DT based on different integration levels. Four 
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levels are identified in the smart energy application 
field: low carbon city, smart grid, electrified 
transportation, and advanced energy storage system. 
Each level is explained using literature examples to 
illustrate their practical implications.  

GT performance assessment is of great importance to 
optimize operations and support decisions concerning 
maintenance interventions. The need of a reliable health 
assessment, for obvious reasons, was especially felt for 
GTs used for aircraft propulsion. Indeed, the first 
applications were oriented to the aero-engine field. 
(Urban, 1973) firstly proposed a method based on a 
linear Gas Path Analysis (GPA) for fault diagnosis 
purposes. Since that time, non-linear and adaptive 
GPA method have been proposed (Volponi 2014; 
Aretakis, Mathioudakis & Stamatis, 2003). 

In the recent years, many concepts of DT have been 
introduced to assess GT performance and for fault 
detection (Xie et al 2021). (Kraft & Kuntzagk 2017) 
proposed a top-down approach to build a multilevel 
DT from component level to the entire GT system. A 
high-fidelity multi-physics DT model has been 
proposed by (Krishnababu, Valero & Wells, 2021). The 
model includes Computational Fluid Dynamics (CFD) 
and Finite Element Methods (FEM) to evaluate in 
service performance deterioration and to estimate the 
impact of maintenance interventions. (Zaccaria, 
Stenfelt & Aslanidou, 2018) chose an adaptive physic-
based model to establish the DT of aircraft engines. The 
abovementioned researches indicate that high-fidelity 
physical models are required to ensure adequate levels 
of precision, as highlighted by (Sun et al 2023). 

In summary, researchers emphasize the definition and 
application of DTs in the energy field, with a specific 
emphasis on power-related systems. Despite the 
optimistic prospects and broad applicability of DT, 
several challenges persist that require comprehensive 
research for resolution. The primary challenges 
revolve around data collection and processing, real-
time computing capabilities, storage capacity, and 
limitations in the existing DT models. Specifically, there 
is a lack of feedback and updates in the management of 
functional logical components, which inhibits the 
consideration of dynamic operational processes and 
product life prediction beyond the manufacturing & 
operational phases. Giving due attention to extending 
product life and managing product health is essential, 
but the current DT models primarily focus on the 
operational phase, leaving gaps in the production and 
reuse phases. Rectifying these challenges necessitates 
further investigation and development efforts.  

The modified physics-empirical model discussed in this 
paper, provides the possibility to perform a 
differentiation analysis to isolate the single effect of a 
particular degradation mechanism. This is in addition to 
predicting the GT deterioration using health parameters 
and/or deterioration parameters, giving the possibility 
to model losses in the rotating and stationary stages 
separately. There are two main contributions of the 
proposed model with respect to the state of the art DT 

models in the respective research. First, it enables the 
simulation of the stage-by-stage (or row-by-row) 
degradation which could occur in the gas turbine. This 
capability provides critical information regarding the 
performance of the gas turbine and facilitates decision-
making concerning maintenance topics. The second 
main contribution is the correlation of the physical 
changes such as tip clearances , airfoil geometry and 
effective flow area to performance. While researchers 
such as in (Kurz et al 2008; Burnes & Kurz 2018) detailed 
the implication of compression and expander 
degradation, their work revolved around analyzing the 
implication of the deterioration in the component 
efficiencies on the GT performance, rather than the 
individual degradation mechanism.  

3. Materials and Methods

The proposed approach constitutes a systematic 
methodology for the development of digital twin 
models for GTs. It is adaptable to different gas turbine 
designs, provided that there is an underlying physical 
model or detailed geometrical information available. 

The approach can be split in two parts:  
• Physics-based modeling;
• Empirical-based modeling (Historical data).

3.1. Physics-based modeling 

The structure of physics-based GT models is shown in 
Fig. 1. The model (coded in FORTRAN language) 
enables the part-load simulation of a GT in the 
deteriorated condition. The approach follows a  
framework, each module representing a GT 
component (compressor, combustor, expander, 
cooling system, etc.) Each module incorporates 
governing equations derived from the principles of 
conservation of mass, momentum, and energy. 
Auxiliary equations are introduced to evaluate 
quantities required to fully describe phenomena 
occurring inside each GT component. Such quantities 
are, for example, effective flow areas, effective flow 
angles, blade profiles, incidence losses in moving and 
stationary blades, cooling effectiveness, combustion 
efficiency, pressure loss in combustion chamber, and 
so on. A mean line row by row approach has been 
adopted to model both the compressor and expander. 
Such an approach has been favored over the one based 
on compressor and expander performance maps, 
usually adopted to assess the effect of degradation 
phenomena on GT performance such as performed by 
(Kurz, Brun & Wollie, 2008). The adopted approach 
requires a higher computational effort, but allows a 
more detailed insight into the compression and 
expansion processes, because the model provides values 
of pressure and temperature at the inlet and at the exit 
of each compressor/expander row. 

The first step of the modeling process is the 
implementation of a model capable of reproducing the 
GT behavior in absence of deterioration phenomena, i.e. 
in New&Clean (N&C) condition.  
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If the geometrical details and empirical relations 
characterizing each component were known, the model 
would represent correctly all the thermo-fluid dynamic 
phenomena occurring in the real component. 
However, when building a model, usually only partial 
sizes, shapes and correlations are available and, 
necessarily, unknown quantities involved in the 
process (i.e. work and heat exchange, losses, velocity 
distributions, etc.) are evaluated by using empirical 
correlations based on similarity concepts or assumed on 
the basis of current GT design practice. 

As a consequence, the model response does not fit 
perfectly the real N&C GT behavior. To fully establish the 
N&C GT simulator, suitable  coefficients are introduced 
to modify the correlations adopted to model processes 
occurring inside each plant component (heat and work 
transfer, entropy production, flow functions, etc.) to 
align the model’s output to the real machine 
performance.  

Such coefficients are evaluated by solving a 
minimization problem whose objective function is a 
Mean Square Error (MSE) function, errors being the 
differences between real and calculated quantities, i.e. 
measured pressures and temperatures along the gas 
path, output power, fuel mass flow, etc. The real N&C 
quantities can be provided by the manufacturer or, 
alternatively, collected at acceptance tests. After the 
evaluation of the abovementioned coefficients, the 
model is capable of replicating the GT N&C behavior. It 
is interesting to note that, as the manufacture and the 
commissioning of the machine end with the 
acceptance test, the implementation of its DT requires 
a calibration operation carried out by using acceptance 
test data.  

As mentioned earlier, the performance of a gas turbine 
(GT) gradually declines over time due to degradation 
phenomena such as fouling, corrosion, erosion of 
parts, and more. Essentially, the GT consists of various 
components (machines and apparatuses), and their 
performance undergoes continuous changes as a 
consequence of the progression of deterioration 
processes. Consequently, it is necessary to periodically 
reassess the actual behavior of GT components and 
adapt the GT model accordingly. Therefore, a set of 
coefficients has been introduced to allow the GT model 
to reproduce the actual deteriorated behaviors of main 
plant components with reference to: 

• work exchange and heat transfer;
• dissipative phenomena related to internal

friction and coupling between working fluid
and surfaces;

• effective flow function modifications.

For each component or a part of it (e.g. a single 
compressor/expander moving or stationary blade 
row), an array of coefficients can be introduced. Such 
coefficients are evaluated by minimizing the MSE 
between measured and calculated data. Therefore, the 
number of coefficients that can be introduced depends 
on the number of available monitored data. 

The values assumed by such coefficients can be taken 
as a measure of how much deterioration phenomena 
affect the performance of the particular GT 
component. Hence, they can be considered as "health 
parameters" since they provide insight into the 
deviation of the component's actual behavior from its 
N&C performance. 

Figure 1. An Overview of the Roma TRE Modular approach. Taken from 
(Mazzoni, Chennaoui, & Giovannelli, 2014). 

The validation of these physics-based codes has been 
extensively described in the works of (Cerri, Borghetti, & 
Salvini, 2005; Cerri, Chennaoui, Giovannelli & Salvini, 
2011). Sensitivities studies have been demonstrated for 
the LM6000 and Ansaldo/Siemens 94.3 GTs, 
demonstrating capability of reproducing  field data 
within 1% error. 

3.2. Empirical-based modeling 

The Empirical-based modeling comprises of a 
regression analysis, targeting the relationships within 
the degradation mechanisms and between them and 
the operational conditions/history (i.e. number of 
hours, starts, etc.). The use of correlations is not 
proposed as a substitute for the physics-based 
approach, it is intended to reinforce the quantitative 
predictions. Furthermore, the empirical approach 
allows for the normalization of the physical changes 
and GT health parameters, this is proposed to 
overcome one of the main challenges with the 
compatibility of existing systems and the need to have 
specific geometrical and operational data of each type 
of GT. The operational data limits, intervals and 
respective criteria have been detailed in (Farhat & 
Salvini, 2022a, 2022b). The authors detailed two 
popular methods used in the industry to calculate the 
inspection intervals and component lives including 
hour/starts based criterion and equivalent operating 
hours. The proposed approach contributes to the 
state-of-the-art prediction models in several ways: 

• segregating hours vs. starts driven
degradation mechanisms;

• performing a cause-effect analysis 
(degradation vs. performance); 
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• correlating changes in the physical features to
health parameters.

The integration of historical data on gas turbine 
operations and degradation into the model plays a 
crucial role in capturing the behavior and performance 
of the gas turbine system. This historical data is 
collected from various sources, such as field  
measurements and observations, maintenance 
records, and operational information. To ensure 
consistency and comparability, the data is 
standardized to a common scale. This standardization 
process involves normalizing the data values to 
eliminate variations caused by different measurement 
units, ranges, or data formats.  

Once the historical data is standardized, the regression 
analysis is performed to identify relationships between 
the operating variables (such as operating hours, load, 
type of fuel) and degradation effects (such as 
component deterioration and physical deviations). 
The regression analysis allows for the identification of 
patterns and correlations within the data, enabling the 
model to make precise predictions about the gas 
turbine's conditions and performance based on the 
given operating parameters. 

By incorporating these techniques, the digital twin 
model can provide valuable insights into the current and 
future state of the gas turbine system. This information 
enables proactive maintenance strategies, allowing 
operators to identify potential issues or performance 
degradation in advance and take appropriate actions to 
mitigate them. It also facilitates optimization strategies 
by providing a means to evaluate and optimize the gas 
turbine's performance under different operating 
conditions or parameter settings. 

Furthermore, the proposed DT model allows for the 
integration of empirical relationships concerning the GT 
performance. This means that not only the operational 
aspects but also the physical characteristics and 
behavior of the components are taken into account. This 
comprehensive representation of the gas turbine system 
allows for a more accurate simulation and prediction of 
its performance. 

With sufficient computing capabilities, the digital twin 
model can be expanded into a real-time model. This 
means that the model can continuously update and 
adjust its predictions and recommendations based on 
the real-time data obtained from the operating gas 
turbine. This real-time capability enhances the model's 
responsiveness and its ability to support decision-
making processes in dynamic operational 
environments. 

In summary, by integrating historical data, applying 
regression analysis, and considering the modular  
components, the digital twin model of a gas turbine can 
accurately predict its conditions and performance. This 
capability enables proactive maintenance and 
optimization strategies, ultimately leading to improved 
operational efficiency and cost-effectiveness. The 
construction of the DT-GT model, as depicted in Figure 

2, follows the main steps outlined in the methodology. 

3.2.1. Pre-processing and testing 

The data pre-processing and testing involves cleaning 
and preparing the measured data for use in the model. 
This includes characterizing and normalizing the data, 
eliminating outliers, data redundancy and 
transforming data into a format that is suitable for 
modelling. Testing is used to identify patterns in the 
data, in addition to addressing its accuracy and 
integrity. It involves running simulation tests and 
comparing the results to actual gas turbine 
performance. This provides important feedback and 
insight into the reliability of the data and trends. 

3.2.2. Normalization 

Normalization is performed to adjust the data values 
(from the prior step) to a common scale “physical 
change factor”. This is done to make sure that data 
gathered from different types and classes of gas 
turbines is consistent and comparable. Nominalized 
predictive models, which gauge the relationship 
between deterioration factors (or actuality functions) 
and operational history, are developed as results. This 
allows for accurate predictions of components’ 
conditions and gas turbine performance. 

Figure 2. Digital model overview. 

Finally, to take into account changes in characteristics 
such as filters efficiency, flow areas, twist angle, and 
blade losses, actuality functions must be calculated. 
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These functions represent the real condition of the 
various modules (i.e. compressor, expander, and so 
on). They quantify the degradation from a reference 
status (e.g. N&C status or after a major overhaul) by 
taking into consideration: 
• frictional losses from roughness increase,

cracking, coating surface deterioration, etc.;
• changes in the airfoil shapes such as deformation,

erosion, twist, etc.;
• deviation in the effective flow areas caused by

changes in the passages, tip clearances, 
concentricity, etc.

3.2.3. Regression Analysis 

The regression analysis is performed using Minitab 
software.  The ordinary least square regression 
method is applied to  identify the relationship between 
the operating hours, starts, load, type of fuel, and 
deviations from the effective flow area, corrosion, 
erosion, and blade twist. By examining past 
observations, correlations between input variables 
(operating history) and output variables (degradation 
effects) can be determined and used to forecast trends 
in the effect of certain types of operations and/or 
aging components on the gas turbine's performance.  

4. Results and Discussion

The results depicted in Figures 3 and 4 demonstrate 
the correlation weights between the historical data of 
different types of gas turbines and their respective 
operating regimes. 

Figure 3. RA results- Degradation mechanisms weights by operating 
hours. 

Figure 4. RA results- Degradation mechanisms weights by number of 
starts. 

A regression analysis was conducted to examine the 
rate of deviation according to the number of hours 
(Figure 3) and/or starts (Figure 4). The airfoil twist, 
oxidation, radial clearances, and flow areas were the 
features/mechanisms most affected by the number of 
hours. However, ovality and fatigue were the 
components more significantly impacted by the 
number of starts. The correlation weights do not 
equal one because other factors, such as the type of 
protective coating and fuel type, can also influence 
the rate of degradation. 
By leveraging prior results, it is possible to analyze 
the GT deterioration in terms of operating hours and 
number of starts. Figures 5 and 6 demonstrate the 
effects of three critical features (airfoil twist, vane 
effective flow areas, and blades’ tip clearances) of the 
expander in terms of physical characteristics and 
corresponding performance change, respectively. As 
seen in Figure 5, the deviation in the effective flow 
areas over the operating intervals of 24K, 48K and 
72K hours results in an inverse relationship with the 
pressure ratio, while increases in radial leakages and 
airfoil twist negatively affect the power output by 
circa 4%. This is due to reduction in flow areas 
(caused by accrued contaminants and corrosive 
elements) and rise in clearances and airfoil twist. To 
recover these losses, the turbine inlet temperature is 
increased by burning more fuel, leading to efficiency 
loss of circa 6.5%.  
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Figure 5. Deviation trends in physical characteristics. 

Figure 6. Deviation trends in GT performance. 

The performance deterioration due to radial 
clearances, effective flow area, and airfoil twist is 
compared to the relevant literature of (Radtke & 
Dibelius 1980; Kurz et al 2008; Burnes & Kurz 2018). 
Radtke and Dibelius reported that a 0.5% and 0.4% 
reduction in blade height in the rotating and 
stationary rows, respectively, lead to a 0.6% drop in 
efficiency. Our model showed that a 0.5% decrease in 
blade height in the 1st stage rotating row causes a 
0.5% decrease in efficiency. This difference can be 
attributed to the additional losses from the stationary 
clearances, which were not included in our case. (Kurz 
et al 2008) reported a 2.5% efficiency drop for a 1% 
overall component degradation. Finally, (Burnes & 
Kurz 2018) reported a power drop of around 9% and a 
heat rate increase of over 5% when using a more 
conservative approach. Their results compared the 
degradation at the 3rd interval to the clean condition. 

5. Conclusions

This paper introduces a novel hybrid gas turbine 
model, combining physics-based and empirical 
approaches, to analyze the impact of degradation on 
GT performance across different operating intervals. 
This study presents the complete methodology in 

Section 3, marking its first application. The results 
demonstrate promising trends in GT deterioration 
over time, exhibiting strong alignment with pertinent 
literature in the field.  
Research can be expanded to include other loss 
coefficients or degradation mechanisms such as 
surface roughness and oxidation. Additionally, the 
integration of emerging artificial intelligence (AI) 
tools presents an opportunity to reduce the reliance on 
the physics-based aspect of the model and expand its 
empirical components. This approach holds the 
potential to greatly enhance the model's versatility 
across various gas turbine designs and classes, 
improving its overall applicability. 
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