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Abstract
Today’s global hypercompetitive environment considerably demands optimizing the activities of all companies that want to besuccessful in the long term. Several tools are available on the market for optimizing corporate activities. While these tools are powerful,they are costly and challenging to operate. However, the tools are not suitable for small and medium-sized enterprises (SMEs). SMEsneed tools powerful enough but at the same time user-friendly and cost-effective. The authors of this article are involved in developingone of these tools suitable for SMEs. This paper presents a part of the developed tool that applies a method based on the properties ofPythagorean triples for the numerical modeling of probabilistic flows. The resulting linear approximations are expressed in terms ofrational coefficients, which makes them practical for possible implementation.
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1. Introduction

There is enormous pressure on the optimal managementof companies’ critical processes. Optimal setup and man-agement of the key processes determine the successfuloperation of companies in the market. The most commonoptimality criteria are almost always minimum operatingcosts and maximum business profit. When we optimizecritical processes, their individual parts must also be de-fined, identified, and optimized appropriately. Only fromoptimally configured sub-processes can optimally work-ing process chains characterized by high efficiency andeffectiveness be assembled. It is almost impossible to en-counter a situation where process chains do not changetheir topology or parameters in the long term. Reactingflexibly to changes caused by changing technical, organi-zational, or business conditions is almost always neces-sary.

In addition, the chains also include various warehouses,interim storage facilities, etc. (from here on stacks only),which also change their status. In addition, the smallerthe stack capacity, the more difficult it is to manage pro-cess chains optimally. An extreme situation arises whenprocess chains operate entirely without stacks, e.g., in Justin Time (JIT) mode.
The situation of prominent and wealthy companies isrelatively straightforward when optimizing company pro-cesses. Large companies can afford to invest heavily inbuilding and equipping specialized teams to implementoptimization. In the case of SMEs, however, the situationis different. SMEs usually do not have sufficient resourcesto employ optimization specialists or to purchase powerfulbut also costly and difficult-to-operate optimization tools.SMEs need powerful yet inexpensive and user-friendlytools that non-specialists can operate. The authors of thesubmitted article are involved in developing one of these

https://creativecommons.org/licenses/by-nc-nd/4.0/.
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tools suitable for SMEs.The tool preferably applies the Value Chain (VC) conceptdefined in Porter (1985) for the optimal management ofprocess chains. The VC model allows a better understand-ing of the cost behavior in chains and, consequently, betteridentification of potential Value Added (VA) sources. In par-ticular, the VC model notes strategically essential activitiessuch as research, design, production, sales, delivery, andafter-sales service described in Porter (1985); Kotler et al.(2021), which are critical to the success of the firm. Wealso preferably apply Value Stream Mapping (VSM) (seeLiker (2020); Rother and Shook (2003)) to identify VCswith VA resources.Managing VCs in the case of simple process links isrelatively straightforward. However, a considerably morecomplex situation arises when many interacting activitiesneed to be addressed whose interrelations and interactionsare complicated.The situation is further complicated when managementhas to react to events that could not have been foreseen(e.g., unexpected technical failures, supply interruptions,etc.). In this case, finding the most economically accept-able solution using a simulation model is advantageous.Several planning systems in the market can be used foroptimal chain management. However, few can dynami-cally react to the situation and simultaneously use Big Datafrom VC, which is required today.Streams in mass production could have specific disper-sion. In our paper, we derive a method based on the prop-erties of Pythagorean triples for the numerical modelingof such a probabilistic stream.The article is organized as follows: In Section 2, we re-call the distinction between the perfect production streamand its linear idealization, and the probabilistic productionstream with selected quantile and its idealization employ-ing a parabolic curve. We also mention here some basicproperties of probabilistic production streams.Section 3 explains the background to the solutionmethodology, followed by the details regarding differentconstructions for creating the Pythagorean triples. Inparticular, inner and outer linear approximation meth-ods based on Pythagorean triples are described. Section 4starts with an illustrative example of 100 runs of a simpleproduction stream and we discuss possible modificationsto our approach here. Finally, Section 5 concludes the pa-per.
2. State of the art

The study of probabilistic data streams raises a host of new,exciting research challenges for approximating discreteproduction streams. One of them is the use of linear ap-proximations. Linearization is a significant step in ourapproach. It can be considered a nonlinearity correctionbetween the output and the associated measured quantity.Usually, the nonlinearity can be reduced by using lineariza-tion schemes or a linearization algorithm, as in Chen and

Wang (2013); Luo et al. (2015).The construction of linear approximations of quadraticfunctions has been an active area of research over the pastfew decades (see, e.g., Pottmann et al. (2000)) with empha-sis on the optimality of the approximation. Since we arein our contribution motivated by practical requirementsfor immediate response, we proceed differently.Every discrete production stream can be described as abroken line in a mass-time space. A move along the massaxis represents an increase in quantity, while a movementalong the time axis represents a delay between two sub-sequent events. Suppose an iterative “perfect” processcreates the stream. In that case, all the steps are equal,and the graph of the stream fits to a parallelogram (seeFig. 1). The tangents can be interpreted as perfect con-tinuous streams approximating the given discrete streamfrom above and below.
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Figure 1. Perfect production stream (above) and linear idealization of itsupper bound (below).

In (Kruml and Paseka, 2018), we have shown that lin-ear approximations are very convenient for modeling astack development. We add the approximating linear func-tions if a stack is fed and drawn by more processes. Thealgorithm seeks eventual collisions on the stack. It worksrecursively and improves the approximations only for in-tervals where it did not get identical results for the upperand lower bounds. The algorithm is effective, especiallyfor highly regular production, when processes are per-formed in many repetitions. (The resulting graph has asmaller number of intervals of activity/non-activity and arelatively narrow approximating parallelogram.)
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In reality, processes are often far from such perfectness,and one has to consider some uncertainty in productionparameters. The time parameters, e. g., a cycle time, couldhave a dispersion, or the process could fail in quality, andthe product must be discarded. Such phenomena providechanges in the perfect shape of the graph — the steps neednot be of equal width, and some of them could be missing.Since possible stream runs are no longer unique, we haveto consider a probabilistic environment.While in the perfect case, we ask whether all input andoutput streams of a stack are or are not in a collision, inthe probabilistic environment, we ask if a collision mayor may not happen with a certain probability. That is, wetest the plan merely concerning given reliability. For sucha purpose, we need to model quantiles of the probabilisticenvironment (see Fig. 2).
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Figure 2. A probabilistic production stream with selected quantile (above)and its idealization by means of a parabolic curve (below).

In (Emir et al., 2019) and (Emir et al., 2021), we stud-ied such probabilistic streams and suggested simplifiedcalculus for their addition. Likewise, in those works, westill consider the random effects independent, i.e., that cy-cles of the process have “no memory” and are not affectedby previous cycles. Of course, some unexpected eventscould significantly impact production (worker’s experi-ence, wrong setting of a machine). Still, such a case can bemodeled as uncertainty on a higher plan level — the pro-cess has more instances, and some of them are randomlychosen for specific periods.Finally, we have also assumed that the random vari-ables have some natural probability distribution and can

be represented merely by three parameters µ,σ,γ where
µ is the mean, σ is the standard deviation, and γ a param-eter concerning skewness. We have verified on severalexamples that those three parameters and calculus couldbe sufficient for modeling probability in practice. In thelater work (Emir et al., 2021), we have replaced γ by pa-rameter γp to describe the correction of the pth quantileconcerning a so-called reference distribution which wassome of “natural” symmetric distributions (normal, lo-gistic). It turned out that triples µ,σ,γp can be processedin a similar fashion like µ,σ,γ and we can quite easily pre-dict the development of the pth quantile in mass-time. Inparticular, the parameters γ and γp are invariant to thesumming of equal independent random variables.

Under such assumption, the stream fulfils the followingfacts or conclusions:
• Moves between events of the production are given byequal independent random variables X1,X2, . . .Xn• The global effect of the stream is given as a sum of ran-dom variables Y = X1 + X2 + · · · + Xn.• Sum of means is a mean of the sum, i. e.,

µY = µX1 + µX2 + · · · + µXn = nµX1 . (1)
• Sum of variances is a variance of the sum, i. e.,

σ2
Y = σ2

X1 + σ2
X2 + · · · + σ2

Xn = nσ2
X1 . (2)

• For a standard deviation this yields:
σY = √

nσ2
X1 = √

nσX1 . (3)
• In normal, logistic, and some other probabilistic distri-butions, the pth quantile can be expressed as

µ + zpσ
for suitable zp.• If pth quantile of random variable X1 is

µX1 + zpσX1 + γp

for suitable zp,γp, then pth quantile of random variable
Y can be expected as

nµY + zpσY + γp = nµX1 + √
nzpσX1 + γp. (4)

While equations (1), (2), and (3) are well-known propertiesof random variables, quantile guess (4) is approximate andbased on an observation thatγp remains constant for anyn.This fact is explained and verified in (Emir et al., 2021).
For simplicity, let us assume that the randomness con-cerns only cycle time. We can conclude that the quantilesshould develop along parabolic curves of the form

t = nµ + √
nzpσ + γp. (5)
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If we need to sum parallelly performing streams, we mustsolve the equation, i. e. find the quantity n produced intime t (with respect to the pth quantile). This yields

(t– γp – nµ)2 = nz2
pσ

2 (6)
and after substitution

a = (zpσ
µ

)2 , b = t– γp
µ

we get equation
n2 + (–a– 2b)n + b2 = 0 (7)

with roots
n1,2 = a + 2b±√

a(a + 4b)2 . (8)
Hence the square root operation appears in expressions(5) and (8). The summation of such functions is non-trivial and could increase the computational complexity ofcalculations. We aim to find suitable linear approximationsof the parabolic curves, which would provide summationmethods similar to the model of perfect production.

3. Materials andMethods

We can see that in expression (8) there are both arithmeticand geometric means of a and a + 4b:
A(a,a + 4b) = a + a + 4b2 = a + 2b, (9)
G(a,a + 4b) = √

a(a + 4b). (10)
Our aim is to replace the square root expression√

a(a + 4b)by a linear approximation in variables a,b. After that wewould get
n1,2 = αa + βb (11)

for suitable coefficients α,β. Since only b is a linear func-tion of time t, this would yield a linear correspondencebetween n and t.There are many possibilities for approximating√
a(a + 4b), but among those, we will prefer partitionswhere the coefficients α and β are rational. In such a case,further numerical calculations can be performed preciselywith no risk of rounding errors.By Euclid theorem, the expression √

a(a + 4b) is an al-titude of the right triangle, which splits the hypotenuse to
a and a + 4b (see Fig. 3). Changing the proportion between
a and a + 4b, the right angle corner moves on Thales circlewith the ratio a+ 2b. As t→ ∞, parameter b increases, andthe smaller angle narrows.The rational ratio of √a(a + 4b) to a, b is obtained pre-

G(x, y)
A(x, y)

x y

Figure 3. Visualization of arithmetic and geometric means in Thales circle.

cisely when the triangle is similar to a triangle with alledges integer. Such triangles are called Pythagorean, andtheir edges form Pythagorean triples. (Conversely, a tripleof integers A,B and C is Pythagorean if A2 + B2 = C2, thatis, it makes a right triangle.) Thus we are looking for asufficiently large and dense set of Pythagorean triples. Inthe unbounded case, the parabola is approximated by in-finitely many linear sections. Hence we need methodsfor constructing infinite sequences of Pythagorean tripleswith decreasing angles.
3.1. Families of Pythagorean triples

The first such family of Pythagorean triples was allegedlydiscovered by Pythagoras himself as a sequence of triplesof the form
A = 2k + 1, B = 2k2 + 2k, C = 2k2 + 2k + 1 (12)

for integer k. The formula generates triples
(3, 4, 5), (5, 12, 13), (7, 24, 25),(9, 40, 41), (11, 60, 61), (13, 84, 85),(15, 112, 113), (17, 144, 145), (19, 180, 191),(21, 220, 221), (23, 264, 265), . . .

Another family given by rules
A = 2k, B = k2 – 1, C = k2 + 1 (13)

for integer k ≥ 2 was found by Plato. This yields triples
(4, 3, 5), (6, 8, 10), (8, 15, 17),(10, 24, 26), (12, 35, 37), (14, 48, 50),(16, 63, 65), (18, 80, 82), (20, 99, 101),(22, 120, 122), (24, 143, 145), . . .

Both families satisfy the expectation that the ratio A : C(or the angle) decreases as k → ∞. Notice that the Platofamily doubles the density of the Pythagoras family inthe sense that every second triple of Plato is also that ofPythagoras.Later on, all Pythagorean triples were found by Eu-clid. Today, there are many constructions for creating thePythagorean triples. We will use the enumeration princi-ple discovered in McCullough and Wade (2003):
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Theorem 1. For each h = pq2with p square-free let d = 2pq
for p odd and d = pq for p even. Then for every pair (h, k) of
integers the triple

A = h + dk,B = dk + (dk)2
2h ,C = h + dk + (dk)2

2h (14)
is Pythagorean, and it is generated uniquely.

We obtain the Pythagoras and Plato families of tripleswhen h = 1 (d = 2) or h = 2 (d = 2), respectively, and kruns over all integers. For h = 4 (d = 4), we would get thePlato family with doubled coefficients. Still, h = 8 (d = 4)yields a new family that extends the Plato family in thesame fashion as the Plato family extends the Pythagorasfamily.
More generally, we observe that the density of triplesdoubles in each increment of h in sequence 1, 2, 8, 32, . . . .Hence, we will generate families with

hi =
{1, i = 1,

22i–3, i > 1 (15)
and

di =
{2, i = 1,

2i–1, i > 1. (16)
In what follows, let Ti(k) be the triple given by (hi, k) and
Ti be the family of all Ti(k) with k integer.
3.2. Linear approximations

Now we will express the altitude √
a(a + 4b) of a trianglesimilar to a Pythagorean triple. We get equation√

a(a + 4b) = F(a + 2b) (17)
where F is a ratio between leg A and hypotenuse C. InMcCullough–Wade enumeration, it is given by

F = h + dk
h + dk + (dk)22h

. (18)

Equation (17) results in a quadratic equation with onlyone positive (and reasonable) root
b = a2F2

(1 – F2 + √
F2 + 1) , (19)

and after substituting for F, we infer
b = dk(dk + 2h)4h2 a. (20)
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Figure 4. The inner linear approximation (magenta) simply connectspoints provided by a certain Pythagorean family.

The value of the point in function f(b) = √
a(a + 4b) is

f(b) = dk + h
h a. (21)

Thus we get the point at which coordinates are rationalconcerning parameters a and b, as desired.
In an inner approximation of the parabolic graph, weconnect such consecutive points for some family ofPythagorean triples with fixed h,d (see Fig. 4). The lineshave the left or right endpoints given by k – 1 or k, re-spectively. After substitution and further improving weinfer

α = 2hdk– hd + 2h2 + (dk)2 – d2k
h(d(2k– 1) + 2h) , (22)

β = 4h2h + d(2k– 1) (23)
for the line

yk = αa + βb. (24)
A maximal error of the approximation is calculated as amaximum of function

g(b) = √
a(a + 4b) – (αa + βb). (25)

Since g is continuous, non-negative, and differentiablein all points except the zero-points, the local maxima arerealized in that bmax that g′(bmax) = 0. (Notice that everyinterval of the partition has precisely one local maximum.)We infer that
bmax = ad(2k– 1)(d(2k– 1) + 4h)16h2 (26)

and the maximum error is
g(bmax) = 11ad(2k– 1) – a(8d2k2–8d2k+d2+16dhk–8dh+8h2)4h(d(2k–1)+2h) .

(27)
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Figure 5. In the outer linear approximation (cyan), we find tangents at“Pythagorean points” (blue) and their intersections.

The global maximum always appears in the first inter-val (k = 1) and is equal to
g(bmax) = ad2

4h(d + 2h) . (28)

In an outer approximation, we use the points referringto Pythagorean triples as tangent points of the lines (seeFig. 5). The tangent direction is given by derivation of√
a(a + 4b), and the endpoints of lines are calculated asintersections of pairs of consecutive tangents. Assumethat equations (20) and (21) are satisfied. Then

f ′(b) = 2h
h + dk , (29)

and consequently, we infer pair of coefficients
α = 2hdk + 2h2 + (dk)2

2h(h + dk) , (30)
β = 2h

h + dk (31)
for the tangent (24).

By substitution k– 1 for k, we find the previous tangentwith coefficients, say ᾱ, β̄, and solve equation
αa + βb = ᾱa + β̄b. (32)

The equation (32) yields a left endpoint of the approximat-ing line in
b = ad(dk2 – dk + 2hk– h)4h2 (33)

for k ≥ 2. The case k = 1 is exceptional because there is nopreceding tangent. Here we put b = 0. Substitution k + 1instead of k– 1 would provide the right endpoint.
Contrary to the inner approximation, we obtain thelocal maxima of the difference function g in the endpoints

of lines. This result yields
g(bmax) = ah

(
dk + h– 12 – √

d2(k– 1)k + dh(2k– 1) + h2)
(34)

and again, the global maximum, i.e., the most significanterror of the approximation, is reached at the left endpointof the first line
g(0) = a d2

2h(h + d) . (35)

4. Results and Discussion

It remains to apply the general form of approximations tothe case of Pythagorean families Ti. Substitution of di,hifrom equations (15) and (16) provides further simplifica-tion, and we infer in Table 1 and Table 2.
Table 1. Inner approximation.

inner approximation
left endpoint b = a (k–1)(k–1+2i–1)22i–2 ,
right endpoint b = a k(k+2i–1)22i–2 ,
coefficient α 1 + k(k–1)2i–2(2k–1+2i–1)
coefficient β 2i2k–1+2i–1
maximal error a2i(1+2i–1)

Table 2. Outer approximation.
outer approximation

left endpoint b =


0, k = 1,
a k2+(2i–1–1)k–2i–2

22i–2 , k > 1,
right endpoint b = a k2+(2i–1+1)k–2i–2

22i–2 ,
coefficient α 1 + k2

2i–1(k+2i–2)
coefficient β 2i–1

k+2i–2
maximal error a2i–1(1+2i–2)

4.1. Example

Let us consider a simple production stream that producesa single item in a cycle, and the cycle time takes normaldistribution of probabilityN(µ,σ2) with µ = 1,σ = 0.3. Weassume that the production was performed 100 times, andeach such batch consists of 100 repetitions of the process.We wish to model a 5%-quantile, i.e., a fictional streamfor which 5% of runs are faster and 95% are slower.
The quantile can be expressed as µ–zpσ with zp = 1.645,
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hence the nth item should be produced in time
t = nµ – √

nzpσ. (36)
This yields a continuos function in n corresponding to anupper bound of “ideal random stream”, that is the limitcase that we would get for infinitely many batches. (Thelower bound is obtained by subtracting 1 item from n.) Weget

a = (zpσ
µ

)2
≈ 0.2435 b = t

µ
= t (37)

In reality, the 100 runs of the stream would be the onlydata. The quantile would be constructed by rearrangingthe field 100 × 100 to lists for each n and choosing the 5thvalues for each such list. The statistical error has a stan-dard deviation given by coefficient s = 1/√100 = 1/10. Since
a depends linearly on variance σ2, its statistical standarddeviation is as2. We can accept an approximation as “reli-able” if its maximal error does not exceed the statisticalerror, that is,

g(bmax) ≤ as2. (38)
For Pythagorean families Ti, and the inner or outer ap-proximation we infer

12i(1 + 2i–1) ≤ 1100 , 12i–1(1 + 2i–2) ≤ 1100 , (39)
respectively. In the former case we get a minimal solution
i = 4, in the later case i = 5. We expect finishing the batchin time

t = 100 – 10 · 1.645 · 0.3 = 95.07. (40)
The largest endpoints of approximations satisfy

95.07 ≤ 0.2435 · k(k + 8)64 , (41)
95.07 ≤ 0.2435 · k

2 + 17k– 8256 . (42)
The minimal solutions are k = 75 or k = 148, respec-tively. Hence, the approximations correspond to families
T4(k), 1 ≤ k ≤ 75 or T5(k), 1 ≤ k ≤ 148, respectively.
4.2. Discussion

The endpoints of approximations can be either precisedby adding further points or relaxed by their omitting. ThePythagorean families Ti provide a scheme where pointdensity doubles by incrementing i and the old points arestill used. Since the approximation error is most signifi-cant at the beginning of stream, one could also consider“hybrid” families of Pythagorean triples where density ofpoints decrease in time.

We have started with Pythagorean family T1 but we canalso go backwards and define more relaxed families Ti for
i < 1 by omitting all odd points in every step. Interestingly,it seems that all rules and expressions derived for i ≥ 1 arestill preserved.The example shows that selected density of pointsseems to be redundant with respect to the size (and qual-ity) of the dataset. (In the outer approximation we gotmore points than it came from the dataset.) Perhaps, onecould consider a more relaxed ratio between the statisticalerror and the error of approximation. Also, we have mea-sured the approximation error as a maximum of differencefunction g, but expressing it in another norm of gmightbe more relevant.
5. Conclusion

In general, the choice of model has a significant impacton its quality and performance: the increased complexityof the model gives us higher fidelity to the underlyingdata and therefore higher accuracy but requires additionalcomputational and I/O costs. These high cost naturallyraises the question of whether highly sophisticated modelsare worth it.The described method provides a way how to representa certain type of random stream by polygonal approxi-mations parametrized by rational coefficients. It can beused in the case that the stream is modeled stochastically(by a certain probability distribution) or statistically (by adataset). In both cases the model is replaced by fictionalstreams representing observed quantiles.In future research, we want to focus on refining the va-lidity of models by identifying the causes of process vari-ability. The dynamic separation of inherent process vari-ability from definable (identifiable, systematic, removable,special) variability will be essential for the reliability ofthe models. For this separation, working with Big Dataprocessing will be very advantageous.
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