Towards an Automated Process for Adaptive Modelling of Orthoses and Shoe Insoles in Additive Manufacturing 

  • Gerald A. Zwettler 
  • Martin Trixner, 
  • Clemens Schartmüller, 
  • Sophie Bauernfeind, 
  • Thomas Stockinger, 
  • Christoph Praschl 
  • a,f,d  Research Group Advanced Information Systems and Technology, Research and Development Department, University of Applied Sciences Upper Austria 
  • Department of Software Engineering, School of Informatics, Communications and Media, University of Applied Sciences Upper Austria 
  • bWAKO 3D GmbH (Ltd.), Granitweg 1, 4202 Kirchschlag bei Linz, Austria 
  • acsendance GmbH (Ltd.), Pulvermühlstrasse 3, 4040 Linz, Austria 
Cite as
Zwettler, G.A., Trixner, M., Schartmüller, C., Bauernfeind, S., Stockinger, T., Praschl, C. (2023). Towards an Automated Process for Adaptive Modelling of Orthoses and Shoe Insoles in Additive Manufacturing. Proceedings of the 12th International Workshop on Innovative Simulation for Healthcare (IWISH 2023).,005. DOI: https://doi.org/10.46354/i3m.2023.iwish.005

Abstract

Although orthopedics is becoming increasingly important as a medical domain, especially in emerging countries, the level of automation is still marginal and hardly any Industry 4.0 paradigms have been implemented. In this scientific work, solution concepts for holistic process automation in orthopedics are introduced so that prosthetic covers and orthoses for different body regions can be automated by using AI and evaluated with sensor networks. In this process, body scan models are adapted to the conditions of the anatomy or prosthesis models, so that stability as well as fitting accuracy are given in comparison with the other half of the body. Automation in the field of orthopedics leads not only to a significant reduction in costs but can also help to close the research gap regarding objectifiability of results. The first partial aspects have already been successfully implemented for leg prostheses, arm prostheses and shoe insoles with the aid of machine learning processes and physical models for elastic form fitting. As soon as the overall process has been realized, the applicability will be validated in the following year of the project by means of clinical studies and evaluated by utilizing sensor networks for pressure and temperature measurements.

References

  1. 3DSystems (2023). Geomagic freeform. https://de. 3dsystems.com/software/geomagic-freeform. Accessed on 13.03.2023. 
  2. Adapted icp algorithm for surface based registration in image guided surgery. In Frascio, M., Bruzzone, A.,  Longo, F., and Novak, V., editors, 6th International Work shop on Innovative Simulation for Health Care, IWISH 2017, pages 37–43. CAL-TEK S.r.l. 
  3. Bashir, A. Z., Dinkel, D. M., Pipinos, I. I., Johanning, J. M., and Myers, S. A. (2022). Patient compliance with wearing lower limb assistive devices: A scoping review. Journal of Manipulative and Physiological Therapeutics, 45(2):114–126. 
  4. Bauernfeind, S., Praschl, C., Wakolbinger, M., and Zwet tler, G. (2023). Classification of footprints for correctives in orthopaedics. In Proc. of the International Conference on Electrical, Computer, Communications and Mechatron ics Engineering (ICECCME 2023) 19-20 July 2023, Tenerife, Canary Islands, Spain. Status ACCEPTED. 
  5. Baumgartner, M., Hartmann, F., Drack, M., Preninger, D., Wirthl, D., Gerstmayr, R., Lehner, L., Mao, G., Pruckner, R., Demchyshyn, S., Reiter, L., Strobel, M., Stockinger, T., Schiller, D., Kimeswenger, S., Greibich, F., Buch berger, G., Bradt, E., Hild, S., Bauer, S., and Kaltenbrun ner, M. (2020). Resilient yet entirely degradable gelatin based biogels for soft robots and electronics. Nature materials, 19(10):1102—1109. 
  6. BlenderTM (2023). Surface deform modifier. https://docs.blender.org/manual/en/latest/ modeling/modifiers/deform/surface_deform.html. Accessed on 22.02.2023. 
  7. Dannehl, S., Seiboth, D., Doria, L., Minge, M., Lorenz, K., Thüring, M., and Kraft, M. (2016). A smartphone-based system to improve adherence in scoliosis therapy. i-com, 15(3):313–319. 
  8. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. (2007). Harmonic coordinates for character articulation. ACM Trans. Graph., 26(3):71–es. 
  9. Kettlgruber, G., Danninger, D., Moser, R., Drack, M., Siket, C., Wirthl, D., Hartmann, F., Mao, G., Kaltenbrunner, M., and Bauer, S. (2020). Stretch-safe: Magnetic con nectors for modular stretchable electronics. Advanced Intelligent Systems, 2. 
  10. Koeppe, R., Wakolbinger, L., Handstanger-Deimling, D., Kainz, L., Vereshchaga, Y., and Egger, H. (2022). Seam less and permanent integration of soft and conformable pressure sensors into custom made orthotic devices. Or thopädie Technik, 73:50–54. 
  11. Ngueleu, A. M., Blanchette, A. K., Maltais, D., Moffet, H., McFadyen, B. J., Bouyer, L., and Batcho, C. S. (2019). Va lidity of instrumented insoles for step counting, posture and activity recognition: A systematic review. Sensors, 19(11). 
  12. Praschl, C., Bauernfeind, S., Leitner, C., and Zwettler, G. (2023). Domain-driven design as model contract in full-stack development. In Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2023) 19-20 July 2023, Tenerife, Canary Islands, Spain. Status ACCEPTED. 
  13. Ravuri, M., Kannan, A., Tso, G. J., and Amatriain, X. (2018). Learning from the experts: From expert systems to machine-learned diagnosis models.
  14. Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:  Convolutional networks for biomedical image segmen  tation. LNCS, 9351:234–241. 
  15. Rosenblattl, M. (2008). Profile of the austrian society of  radiological technologists. HealthManagement, 8(2). 
  16. Schroeder, W., Martin, K., and Lorensen, W. (2006). The Visualization Toolkit, An Object-Oriented Approach To 3D Graphics. Kitware Inc. 70.
  17. Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., and Gross, M. (2015). Microstructures to control elasticity in 3d printing. ACM Trans. Graph., 34(4). 
  18. Tan, X., He, L., Cao, J., Chen, W., and Nanayakkara, T. (2020). A soft pressure sensor skin for hand and wrist orthoses. IEEE Robotics and Automation Letters, PP:1–1. 
  19. Villa-Parra, A. C., Delisle-Rodriguez, D., Souza Lima, J., Frizera-Neto, A., and Bastos, T. (2017). Knee impedance modulation to control an active orthosis using insole sensors. Sensors, 17(12). 
  20. Zhang, Q., Lu, J., and Jin, Y. (2020). Artificial intelligence in recommender systems. Complex & Intelligent Systems, 7. 
  21. Zhao, H., Jalving, J., Huang, R., Knepper, R., Ruina, A., and Shepherd, R. (2016). A helping hand: Soft orthosis with integrated optical strain sensors and emg control. IEEE Robotics & Automation Magazine, 23(3):55–64.