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Abstract 
Researchers have increasingly focused on the impact of financial flow on planning decisions in supply chain networks, especially 
due to rising costs and concerns about funding and resource allocation in the post-Covid era. This study introduces a simulation-
optimization model that integrates financial and physical flows in supply chain planning. The model combines mixed-integer 
linear programming and simulation-based optimization through an iterative process. Financial performance is measured using 
the economic value added (EVA) index. To evaluate its effectiveness, the proposed model is compared with conventional SBO and 
MILP approaches on a test problem from recent literature. Results indicate that the proposed simulation-optimization model 
achieves higher EVA compared to the SBO model and demonstrates greater robustness to economic uncertainty than the MILP 
approach. 
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1. Introduction

The efficient management of the supply chain (SC) is a 
crucial requirement for organizations to thrive in a 
highly competitive environment. SC management 
involves connecting the participants in the product or 
service value chain by modeling the flows of physical, 
financial, and information resources. The SC system 
can be complex, encompassing autonomous entities 
such as suppliers, manufacturers, and retailers, as well 
as various processes like procurement, production, and 
distribution. Uncertainties can arise from both internal 
factors, like distribution lead time, and external 
factors, like customer demand (Spiegler et al., 2016). 
Effective management of this complex system requires 

making various planning decisions, all of which are 
influenced by the allocation of financial resources. In 
other words, the availability of financial resources is 
crucial for implementing these planning decisions 
(Hossain et al., 2022). For example, opening a new 
facility in the SC depends on explicit funding 
mechanisms. Furthermore, optimizing planning 
decisions can lead to cost savings, such as optimizing 
inventory decisions that free up financial resources for 
other decisions like expanding production capacity. 
Therefore, incorporating the financial aspect in SC 
planning models ensures the availability of financial 
resources and offers opportunities for saving resources 
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(Hofmann et al., 2023; Yousefi and Pishvaee, 2018). 
To address these challenges, we propose a simulation-
optimization framework that integrates financial flow 
modeling into SC planning problems. The simulation-
optimization methodology is chosen due to its ability to 
combine the advantages of simulation and 
optimization. Optimization models can determine the 
optimal SC decisions, but incorporating complexities 
such as nonlinear relationships, delays, and feedback 
loops in cash and physical flows significantly increases 
their computational cost. On the other hand, 
simulation models are effective in capturing the 
complexities of the SC, but they cannot provide optimal 
decisions. Therefore, simulation-optimization 
emerges as a powerful approach for tackling complex 
SC problems (Badakhshan and Ball, 2021). 
The remainder of the paper is structured as follows: 
Section 2 presents the literature review. Section 3 
describes the problem description and the proposed 
simulation-optimization approach. The model 
formulation is elaborated in Section 4. Section 5 
demonstrates the applicability of the proposed model 
through a case study. Finally, Section 6 concludes the 
paper and provides directions for future research. 

2. State of the art

2.1. Using Simulation-optimization modelling for SC 
management 

Simulation-optimization modelling encompasses the 
combination of simulation and optimization 
approaches, which can be classified into two main 
categories. The first category involves hybrid models 
where simulation and optimization approaches are 
integrated into a single model. The second category 
involves hybrid modelling, where independent 
simulation and optimization models are constructed, 
and a feedback structure is established to integrate the 
solution strategy. Hybrid models can further be divided 
into simulation-based optimization (SBO) and 
optimization-based simulation models. SBO involves 
incorporating optimization algorithms into simulation 
models to determine optimal values for decision 
parameters, while optimization-based simulation 
focuses on computing optimization model parameters 
using simulation or sampling of the optimization 
model scenarios. 
A review of simulation-optimization modelling studies 
in SC management has identified two gaps in the 
literature. Firstly, most studies utilized discrete-event 
simulation (DES) as the simulation approach in 
simulation-optimization models, neglecting the 
potential of system dynamics (SD) simulation for 
tactical and strategic decision making in SCs. To 
address this gap, this study employs SD as the 
simulation technique in a simulation-optimization 
model. 
Secondly, existing SBO models primarily optimize the 

performance of simulation systems by identifying 
optimal values for decision parameters, overlooking 
the optimization of decision variables within the 
simulation models. To address this gap, this study 
presents a simulation-optimization framework that 
integrates an SBO model, consisting of system 
dynamics and genetic algorithm, and an optimization 
model using mixed-integer linear programming 
(MILP). The developed model framework optimizes 
production and distribution decision variables, as well 
as inventory and financial decision parameters within 
the SD simulation model.  
This study contributes to the literature on simulation-
optimization modelling for SC management in two 
ways. Firstly, it employs SD as a simulation technique, 
which is more efficient than DES for tactical and 
strategic decision making. Secondly, it determines 
optimal values for both decision variables and decision 
parameters of a simulation model, going beyond 
previous studies that focused solely on decision 
parameters. 

3. Problem description and modelling approach

We consider a general SC (SC) that comprises four 
stages: (1) suppliers, (2) production center, (3) 
distribution centers, and (4) retailers. The flow of the 
SC starts with suppliers providing raw materials to the 
production center, where products are manufactured 
and then distributed to retailers through distribution 
centers. Retailers are responsible for meeting 
customers' demands. In the opposite direction, 
customers pay for the products they purchase from the 
retailers. The distribution centers and retailers are 
owned by the production center and share a common 
profit. The focus is on a single product and multiple 
time periods in this SC system. The suppliers can fulfill 
the entire production center's order, while both the 
production center and distribution centers have limited 
capacities. The production center, which owns the 
distribution centers and retailers, has access to long-
term and short-term loans. 

To maximize the economic profitability of the SC, we 
have developed a simulation-optimization model that 
determines the optimal values for various decisions. 
These decisions include the amount of raw material to 
be purchased from suppliers, the production rate at the 
production center, the number of suppliers and 
distribution centers needed, the inventory levels at SC 
facilities, the flow of products in the network, the level 
of short-term and long-term liabilities, the level of 
equity, the level of fixed and current assets, the level of 
cash, the price of the product, and the profit 
distribution policy. The simulation-optimization 
model consists of an optimization module and a 
simulation-based optimization (SBO) module, which 
are integrated to identify the optimal decisions. 

The optimization module is a mixed-integer linear 
programming (MILP) model that aims to maximize the 
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economic value added (EVA). It determines the 
structure of the SC, including the decision to open or 
close distribution centers and the selection of 
suppliers. It also determines the optimal amount of raw 
material to be purchased from each supplier, the 
production rate, inventory levels, the flow of products, 
liabilities, equity, assets, and cash levels within the SC. 

In the SBO module, the structure of the SC determined 
by the optimization module is incorporated into a 
system dynamics (SD) simulation model. The SBO 
framework, which combines the genetic algorithm 
with the SD simulation model, is used to identify the 
optimal values for the product price, cash, profit 
distribution policy, and inventory levels at SC facilities. 
This framework iterates between the optimization 
module and the SBO module to refine the optimal 
solution. 

The SBO model inputs the optimal values obtained from 
the optimization module into the MILP model to 
determine new optimal values for the decision 
variables. The SBO model is then run again to obtain a 
new optimal solution, which includes the product price, 
cash, profit distribution policy, and inventory levels. 
The process continues iteratively until the termination 
criterion is met, comparing the EVA obtained in each 
iteration to ensure improvement. 

The information gathered from the optimization-SBO 
model is used to examine if the current solution 
provides a higher EVA than the previous iteration. If the 
termination criterion is satisfied, the solution 
suggested by the optimization-SBO model is accepted. 

Otherwise, the problem is revised for further resolution 
by the optimization-SBO model in subsequent 
iterations. This revision involves adjusting the feasible 
intervals of controllable parameters such as price, 
desired inventory levels, and cash. 

4. Simulation-optimization model
The simulation-optimization model that has been
developed consists of two main modules: an
optimization module and a simulation-based
optimization module. Firstly, we provide an
explanation for each of these modules, detailing their 
individual components and functionalities.
Subsequently, we present the framework that outlines
the integration of these two modules, illustrating how
they work together to achieve the desired outcomes.
This framework is adopted from Badakhshan and Ball
(2023).

4.1. Optimization model 
The goal of the optimization model is to maximize the 
economic value added (EVA) index, as indicated by 
equation (1). The EVA is calculated based on the net 
operating profit after tax (NOPAT) stated in the income 
statement. The weighted average cost of capital 
(WACC) is a metric that represents the actual expenses 
associated with the various capital sources utilized by 
the company, as discussed by Ogier et al. (2004). 

𝑀𝑎𝑥 𝐸𝑉𝐴𝑡 =∑[𝑁𝑂𝑃𝐴𝑇𝑡

𝑇

𝑡=1

− (𝑊𝐴𝐶𝐶𝑡)𝐼𝐶𝑡] (1) 

Step 1:

Run MILP

Output: 

1. selected suppliers and DCs

2. optimal values to the raw material purchasing 

3. production rate

4. inventory levels at supply chain members

5. flow of products in the network,

6. short-term and long-term liabilities

7. equity, fixed and current assets

8. cash level in supply chain

Step 2:

Run Simulation-based optimisation (SBO)

(System dynamics and the genetic algorithm)

Output: 

1. price

2. desired cash

3. Profit distribution policy

4. desired inventory levels at supply chain members

5. flow of products in the network,

6. short-term and long-term liabilities

7. equity, fixed and current assets,

8. cash level in supply chain

9. EVA (MILP-SBO)

Input the initial values to the price, 

desired cash, profit distribution 
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EVAn (MILP-SBO) > 

EVAn-1(MILPSBO) 

Report EVAn-1(MILP-
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Step 3:
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2. desired cash

3. Profit distribution policy
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supply chain membersYes

No

Yes

No

n: Iteration number
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Figure 1. Optimization-SBO data exchange (adopted from  Badakhshan and Ball ,  2023).
The calculation of the weighted average cost of capital 
(WACC) (equation 2) involves multiplying the cost of 
debt (𝐶𝐷) and the cost of equity (𝐶𝐸) by their respective 
proportional weights, and then summing the results. 
The cost of debt represents the average of the interest 
rates associated with short-term and long-term 
liabilities. On the other hand, the cost of equity consists 
of three components. The first component is the risk-
free rate of interest (𝑟𝑓𝑡), which represents the return on 
investing capital in a risk-free asset like government 
bonds. The second component is the difference 
between the expected return of the stock market (𝑟𝑚𝑡

) 
and the risk-free rate (𝑟𝑓𝑡 ), reflecting the additional 
return for investing in a risky asset such as stock 
market bonds. The third component is the risk measure 
(β), which indicates the level of systematic risk present 
in an asset. The invested capital ( 𝐼𝐶 ) (equation 3) 
represents the accumulation of funds from both debt 
and equity financing. 

𝑊𝐴𝐶𝐶𝑡

= (
𝐸𝑡
𝐼𝐶𝑡
(𝑟𝑓𝑡 + (𝑟𝑚𝑡

− 𝑟𝑓𝑡)𝛽)⏟            
𝐶𝑜𝑠𝑡 𝑜𝑓 𝑒𝑞𝑢𝑖𝑡𝑦

)

+(
𝑆𝑇𝐿𝑡 + 𝐿𝑇𝐿𝑡

𝐼𝐶𝑡
(
𝑆𝑇𝐿𝑡
𝑇𝐿𝑡

𝑆𝑇𝑅𝑡 +
𝐿𝑇𝐿𝑡
𝑇𝐿𝑡

𝐿𝑇𝑅𝑡)
⏟       

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑑𝑒𝑏𝑡

(1 − 𝑡𝑟𝑡)) 

  (2) 

𝐼𝐶𝑡 = 𝑆𝑇𝐿𝑡 + 𝐿𝑇𝐿𝑡 + 𝐸𝑡     ∀𝑡.  (3) 

To determine the net operating profit after tax 
(NOPAT) (4), the earnings before interest and taxes 
(𝐸𝐵𝐼𝑇) is multiplied by the complement of the tax rate 
(𝑡𝑟). EBIT represents the gross income of the company 
and is calculated by subtracting the total cost (𝑇𝐶) from 
the net sales (𝑁𝑇𝑆). The revenue of the SC (SC) (6) is 
obtained by multiplying the sales quantities of each 
retailer by the price and summing up the outcomes. 

𝑁𝑂𝑃𝐴𝑇𝑡 = 𝐸𝐵𝐼𝑇𝑡(1 − 𝑡𝑟𝑡)     ∀𝑡.  (4) 

𝐸𝐵𝐼𝑇𝑡 = 𝑁𝑇𝑆𝑡 − 𝑇𝐶𝑡     ∀𝑡. (5) 

𝑁𝑇𝑆𝑡 =∑𝑆𝑅𝑟𝑡𝑝𝑟𝑖𝑡

𝑅

𝑟=1

  ∀𝑡. 
(6) 

The overall cost of the SC (7) comprises various 
components, including the production cost at the 
production center (𝑃𝐶 ), transportation cost between 
centers (𝑇𝑅𝐶), inventory holding cost at centers (𝐻𝐶), 
fixed costs of the centers (𝐹𝐶), cash holding cost (𝐶𝐶), 
and the cost of raw material purchased from suppliers 
(𝑅𝑀𝐶). Equation 8 illustrates the operating cost at the 
production center, which is calculated by multiplying 
the production rate (𝑃𝑅) by the unit production cost 

(𝑢𝑝𝑐). The operating costs encompass expenses related 
to the activities involved in producing final products. 
The transportation cost (𝑇𝑅𝐶) (9) includes the cost of 
transporting goods from the supplier to the 
manufacturer ( 𝑡𝑐 ), from the manufacturer to the 
distributor (𝑡𝑐𝑐), and from the distributor to the retailer 
(𝑡𝑐𝑑). Equation 10 represents the inventory holding cost 
incurred by the manufacturer, distribution centers, and 
retailers. This cost includes the holding cost of raw 
materials (ℎ𝑟) and the holding cost of the product (ℎ𝑝) 
at the production center, as well as the holding cost of 
safety stock at the distribution centers and retailers. 
The unit holding cost of raw material is set at 10% of 
the raw material price, while the unit holding costs of 
the product at the production center (ℎ𝑝), distribution 
centers (ℎ𝑜), and retailers (ℎ𝑠) are also set at 10% of the 
product price. 

𝑇𝐶𝑡 = 𝑃𝐶𝑡 + 𝑇𝑅𝐶𝑡 +𝐻𝐶𝑡 + 𝐹𝐶𝑡 + 𝐶𝐶𝑡 + 𝑅𝑀𝐶𝑡

+ 𝐷𝑃𝑅𝑡    ∀𝑡. (7) 

𝑃𝐶𝑡 = 𝑢𝑝𝑐𝑡𝑃𝑅𝑡     ∀𝑡. (8) 

𝑇𝑅𝐶𝑡 =∑𝑡𝑐𝑠𝑡𝑋𝑠𝑡 +∑𝑡𝑐𝑐𝑑𝑡𝑆𝐶𝑑𝑡

𝐷

𝑑=1

𝑆

𝑠=1

+∑∑𝑡𝑐𝑑𝑑𝑟𝑡𝑆𝐷𝐼𝑑𝑟𝑡

𝐷

𝑑=1

𝑅

𝑟=1

 ∀𝑡. 

(9) 

𝐻𝐶𝑡 = ℎ𝑟𝑡  (
𝐹𝐼𝑅𝑡 + 𝐹𝐼𝑅𝑡−1

2
) + ℎ𝑝𝑡  (

𝐹𝐼𝑃𝑡 + 𝐹𝐼𝑃𝑡−1
2

)

+∑ℎ𝑜𝑑𝑡

𝐷

𝑑=1

 (
𝐹𝐼𝑂𝑑𝑡 + 𝐹𝐼𝑂𝑑𝑡−1

2
) 

+∑ℎ𝑠𝑟𝑡

𝑅

𝑟=1

(
𝐹𝐼𝑆𝑡 + 𝐹𝐼𝑆𝑡−1

2
)     ∀𝑡.

(10) 

The fixed cost (11) encompasses all the expenses 
incurred by a member of the SC (SC), such as employee 
salaries, that are not dependent on the quantity of 
goods and services provided by the member. For 
distribution centers, this cost is determined by 
multiplying the fixed cost (𝑓𝑐𝑑 ) by a binary variable 
indicating the activity status of the distribution center. 
However, the fixed costs of the production center (𝑓𝑐𝑝) 
and retailers (𝑓𝑐𝑟 ) are not multiplied by the binary 
variable, as it is assumed that they are fixed in their 
respective locations. Companies hold cash as a means 
to pay their suppliers for services rendered and to cover 
unexpected expenses that may arise. The cash holding 
cost (12) represents the opportunity cost of holding 
cash instead of investing it in more profitable options, 
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such as purchasing stock. This cost is calculated by 
multiplying the unit cash cost (𝑢𝑐𝑐) by the average cash 
amount during the period. The raw material cost (13) 
corresponds to the expense incurred from purchasing 
raw materials from various suppliers. It is determined 
by multiplying the quantity purchased (𝑋) by the unit 
price of each raw material (𝑟𝑚𝑐). Depreciation (𝐷𝑃𝑅), as 
shown in constraint (14), is calculated by multiplying 
the value of fixed assets by the depreciation rate (𝑑𝑟). 

𝐹𝐶𝑡 = ∑𝑓𝑐𝑑𝑑𝑡𝑌𝑑𝑡

𝐷

𝑑=1

+ 𝑓𝑐𝑝𝑡 +∑𝑓𝑐𝑟𝑟𝑡

𝑅

𝑟=1

 ∀𝑡. (11) 

𝐶𝐶𝑡 = 𝑢𝑐𝑐𝑡 (
𝐶𝑆𝑡 + 𝐶𝑆𝑡−1

2
)     ∀𝑡. (12) 

𝑅𝑀𝐶𝑡 =∑𝑋𝑠𝑡𝑟𝑚𝑐𝑠𝑡

𝑆

𝑠=1

  ∀𝑡. (13) 

𝐷𝑃𝑅𝑡 = 𝑑𝑟𝑡𝐹𝐴𝑡      ∀𝑡. (14) 

4.1.2. Constraints 

Constraint (15) represents the equation that governs 
the inventory level of raw material in the production 
center over time. It states that the inventory at the 
current period is determined by adding the remaining 
inventory from the previous period, the amount of raw 
material purchased from suppliers, and subtracting the 
quantity consumed for manufacturing final products. 
Similarly, constraint (16) defines the available 
inventory of products in the production center at the 
end of a specific period. It is calculated by summing the 
inventory at the end of the previous period, the 
production rate during the current period, and 
subtracting the quantity of products transported from 
the production center to the distribution centers within 
the same period. 

𝐹𝐼𝑅𝑡 =∑𝑋𝑠𝑡

𝑆

𝑠=1

− 𝑃𝑅𝑡𝑜𝑡 + 𝐹𝐼𝑅𝑡−1    ∀𝑡. (15) 

𝐹𝐼𝑃𝑡 = 𝑃𝑅𝑡 −∑𝑆𝐶𝑑𝑡

𝐷

𝑑=1

+ 𝐹𝐼𝑃𝑡−1     ∀𝑡. (16) 

Constraints (17) and (18) express the relationship 
between inventory levels at distributors and retailers. 
They indicate that the inventory at each member of the 
SC is determined by adding the incoming flow of 
products from the higher-level echelon, the remaining 
inventory from the previous time period, and 
subtracting the outgoing flow of products to the lower-
level echelon. 

𝐹𝐼𝑂𝑑𝑡 = 𝑆𝐶𝑑𝑡 −∑𝑆𝐷𝐼𝑑𝑟𝑡

𝑅

𝑟=1

+ 𝐹𝐼𝑂𝑑𝑡−1     ∀𝑑, 𝑡. (17) 

𝐹𝐼𝑆𝑟𝑡 = ∑𝑆𝐷𝐼𝑑𝑟𝑡

𝐷

𝑑=1

− 𝑆𝑅𝑟𝑡 + 𝐹𝐼𝑆𝑟𝑡−1     ∀𝑟, 𝑡. (18) 

Constraint (19) ensures that the quantity of products 
transported from each retailer is limited to the demand 
of the end customers or less. 
𝑆𝑅𝑟𝑡 ≤ 𝑑𝑟𝑡      ∀𝑟, 𝑡. (19) 

Constraint (20) ensures that the total number of 
products sold to end customers is equal to the total 
number of products sent to the retailers. Constraint (21) 
states that the total number of products shipped to the 
retailers should be equal to the total number of 
products sent to the distribution centers. 

𝑆𝑅𝑟𝑡 = ∑𝑆𝐷𝐼𝑑𝑟𝑡

𝐷

𝑑=1

  ∀𝑟, 𝑡. (20) 

∑𝑆𝐷𝐼𝑑𝑟𝑡 = 𝑆𝐶𝑑𝑡

𝑅

𝑟=1

  ∀𝑑, 𝑡. (21) 

Constraint (22) guarantees that there is at least one 
active supplier during each period. Constraint (23) 
ensures that there is at least one open distribution 
center during each period. 

∑𝑍𝑠𝑡 ≥ 1

𝑆

𝑠=1

  ∀𝑡. (22) 

∑𝑌𝑑𝑡 ≥ 1

𝐷

𝑑=1

  ∀𝑡. (23) 

Constraints (24)-(27) mandate that the inventory 
levels at the production center, distribution centers, 
and retailers must exceed the predetermined safety 
stock levels, also referred to as the desired inventories 
(DI), which are determined by the SBO model. 

𝐷𝐼𝑅𝑀𝑡 ≤ 𝐹𝐼𝑅𝑡 ≤ 𝑐𝑎𝑝𝑟𝑚𝑡     ∀𝑡. (24) 

𝑃𝐷𝐼𝑡 ≤ 𝐹𝐼𝑃𝑡 ≤ 𝑐𝑎𝑝𝑡     ∀𝑡. (25) 

𝑌𝑑𝑡𝐷𝐷𝐼𝑑𝑡 ≤ 𝐹𝐼𝑂𝑑𝑡 ≤ 𝑌𝑑𝑡𝑐𝑎𝑝𝑑𝑑𝑡      ∀𝑡, 𝑑. (26) 

𝑅𝐷𝐼𝑟𝑡 ≤ 𝐹𝐼𝑆𝑟𝑡 ≤ 𝑐𝑎𝑝𝑟𝑟𝑡     ∀𝑡, 𝑟. (27) 

Constraint (28) regulates the production rate of the 
production center, ensuring that it does not surpass the 
available production capacity and remains above zero. 

0 ≤ 𝑃𝑅𝑡 ≤ 𝑝𝑟𝑐𝑎𝑝𝑡     ∀𝑡. (28) 

Constraint (29) presents the fundamental equation of 
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the balance sheet, which highlights the equivalence 
between assets and the combination of equity (𝐸) and 
debts. The assets encompass both fixed assets (𝐹𝐴) and 
current assets (𝐶𝐴), while the debts consist of both 
short-term liabilities (𝑆𝑇𝐿) and long-term liabilities 
(𝐿𝑇𝐿). 

𝐹𝐴𝑡 + 𝐶𝐴𝑡 = 𝐸𝑡 + 𝑆𝑇𝐿𝑡 + 𝐿𝑇𝐿𝑡     ∀𝑡. (29) 

The value of fixed assets (𝐹𝐴) at the end of each period 
(30) is calculated by summing up the fixed assets of all
SC (SC) members and subtracting the depreciation
amount.

𝐹𝐴𝑡 = ∑𝐷𝐹𝐴𝑉𝑑

𝐷

𝑑=1

𝑌𝑑𝑡 + 𝑃𝐶𝐹𝐴𝑉𝑡 +∑𝑅𝐹𝐴𝑉𝑟𝑡

𝑅

𝑟=1

− 𝐷𝑃𝑅𝑡    ∀𝑡.

(30) 

Constraint (31) formulates the current assets (𝐶𝐴) 
which is composed of cash (𝐶𝑆), receivable accounts 
(𝑅𝐴), and inventory value (𝐼𝑁𝑅).  

𝐶𝐴𝑡 = 𝐶𝑆𝑡 + 𝑅𝐴𝑡 + 𝐼𝑁𝑅𝑡     ∀𝑡. (31) 

Constraint (32) demonstrates the cash availability, 
which is calculated by combining the total amount of 
loans (𝑆𝑇𝐿 + 𝐿𝑇𝐿), newly issued stocks, and the 
operating profit that can be accessed as cash. The 
portion of the operating profit that cannot be accessed 
as cash is accumulated in the receivable accounts (𝑅𝐴) 
(33). 

𝐶𝑆𝑡 = 𝑐𝑠𝑠𝑡𝑁𝑂𝑃𝐴𝑇𝑡 + 𝑁𝐼𝑆𝑡 + 𝐶𝑆𝑡−1     ∀𝑡. (32) 

𝑅𝐴𝑡 = (1 − 𝑐𝑠𝑠𝑡) 𝑁𝑂𝑃𝐴𝑇𝑡 + 𝑅𝐴𝑡−1  ∀𝑡. (33) 

Constraint (34) represents the value of inventory, 
which is calculated by multiplying the sales price of 
each member by their respective inventory levels, and 
then summing up the results. 

𝐼𝑁𝑅𝑡 = 𝐹𝐼𝑅𝑡 𝑟𝑚𝑣𝑡 + (𝐹𝐼𝑃𝑡 +∑𝐹𝐼𝑂𝑑𝑡𝑌𝑑𝑡

𝐷

𝑑=1

+∑𝐹𝐼𝑆𝑟𝑡

𝑅

𝑟=1

)𝑝𝑟𝑖    ∀𝑡. 

(34) 

Constraint (35) computes the equity value (𝐸) at a given 
period by summing up the accumulated equity from the 
previous period, the net operating profit after tax 
(𝑁𝑂𝑃𝐴𝑇) that remains undistributed to shareholders, 
and the value of newly issued stocks. 

𝐸𝑡 = (1 − 𝑃𝐷𝑃𝑡)𝑁𝑂𝑃𝐴𝑇𝑡 + 𝐸𝑡−1 + 𝑁𝐼𝑆𝑡     ∀𝑡. (35) 

Constraint (36) ensures that the cash level at the end of 

each period is greater than the safety cash level known 
as desired cash level determined by the SBO model. 
𝐷𝐶𝑆𝑡 ≤ 𝐶𝑆𝑡     ∀𝑡. (36) 

4.2. Simulation-based optimization model 
The optimization model discussed in section 4.1 
overlooks the dynamic aspects of the SC, such as non-
linearities, delays, and feedback loops present in both 
physical and financial flows. Incorporating these 
dynamics into the optimization model transforms it 
into a non-linear model, which substantially increases 
the computational time required. To address this, SBO 
(System Dynamics-based Optimization) proves to be 
more effective in capturing the SC dynamics. 
Therefore, we have devised an SBO model that 
combines System Dynamics simulation with a Genetic 
algorithm. The purpose of this SBO model is to 
determine the optimal values for inventory and 
financial decision parameters that are disregarded in 
the initial optimization model. 

4.2.1. System Dynamics Simulation 

System Dynamics (SD) simulation provides a more 
realistic representation of the physical and financial 
flows within the studied SC (SC). It considers the 
dynamic nature of these flows from three perspectives, 
enhancing the accuracy of the model. Firstly, SD 
simulation considers the delays in both physical and 
financial flows, which include distribution lead time 
between SC members, production lead time at the 
manufacturer, and payment lead time. In this study, 
distribution and production lead times are assumed to 
be 1 week, while the payment lead time is set to 4 weeks. 
Secondly, SD simulation incorporates feedback loops, 
such as the material inventory control loop, which 
adjusts the material order quantity based on the 
current inventory level. This means that higher 
material inventory levels result in lower material order 
quantities, creating a self-regulating feedback 
mechanism. Lastly, SD simulation formulates non-
linear relationships between the decision parameters 
and variables by integrating the physical and financial 
decision parameters. This ensures that the model 
captures the complex interactions and dependencies 
present in the SC, resulting in more accurate and 
realistic outcomes. 

4.2.2. Genetic Algorithm (GA) 

The Genetic Algorithm (GA) is utilized in the SD 
simulation model to determine the optimal values for 
the inventory and financial decision parameters. Unlike 
analytical optimization methods, GAs do not rely on 
derivative information, making them suitable for 
handling numerically generated data. They possess the 
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ability to escape local minimums and are effective in 
optimizing both continuous and discrete parameters, 
with a particular emphasis on continuous parameters 
in this study. 

The GA is a well-suited approach for optimizing the SD 
simulation model as it integrates seamlessly with the 
continuous inventory and financial decision 
parameters. Figure 2 illustrates the System Dynamics-
Based Optimization (SBO) framework, which combines 
the SD simulation and GA. The SBO process initiates 
with the optimization algorithm, namely the GA, 
generating initial values within the feasible ranges for 
the inventory and financial decision parameters. The 
SD simulation model is then executed using these 
generated values to evaluate the system's 
performance, specifically measured by the mean of the 
Economic Value Added (EVA). The performance 
measures obtained from the simulation are fed back 
into the optimization algorithm, which generates a 
new set of inventory and financial decision parameters. 
These parameters are then inputted into the simulation 
model for evaluation, and the iterative process 
continues. The SBO process iterates until a user-
defined stop criterion is met. In this study, the stopping 
criteria are set at 300 generations, meaning the 
iterative process will be performed for a specified 
number of evaluations or until the maximum number 
of generations is reached. 

Figure 1. SBO framework (adopted from Badakhshan and Ball ,  2023). 

4.3. Integrating optimization and SBO models 

Optimization models can determine the optimal values 
for decision variables, but they may not effectively 
capture the dynamics of SC (SC). On the other hand, 
System Dynamics-Based Optimization (SBO) models 
excel at considering SC dynamics and identifying 
optimal values for decision parameters, but they may 
not directly determine the optimal values for decision 
variables. By integrating optimization and SBO models, 
we can leverage the strengths of both approaches. In 
the integrated framework, the recommendations from 
the optimization model and the decisions obtained 
from the SBO model are combined to determine key 
aspects such as the quantity of raw material to be 
purchased, the production start rate, and the shipment 
rates throughout the network. 
The material delivery rate (37) in this integrated model 

is determined by the desired material order rate from 
the SD simulation model and the material order rate 
suggested by the optimization model. The production 
start rate (38) is influenced by the desired production 
rate, feasible production based on material availability 
from the SD model, and the production rate 
recommended by the optimization model. The 
manufacturer's shipment rate (𝑴𝑺𝑹𝒅) (39) is 
determined by considering the maximum shipment 
rate to each distributor, the desired shipment rate of 
each distributor, and the shipment rate suggested by 
the optimization model. 
The number of products shipped from each distribution 
center to each retailer (𝑫𝑺𝑹𝒅𝒓) (40) is a function of the 
desired shipment rate determined by the optimization 
model, the maximum shipment rate, and the 
distributor's inventory obtained from the SD 
simulation model. The sale rate of each retailer (𝑹𝑺𝑹𝒓) 
(41) is calculated based on factors such as customer
demand, the retailer's inventory level, and the sale rate
obtained from the optimization model. By integrating
optimization and SBO models, we can optimize
decision parameters while considering SC dynamics,
resulting in a more comprehensive approach to
decision-making in the SC.

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 =

𝑀𝑖𝑛 (
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑡𝑒,

𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚  𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝑃𝑅𝑡
) 

(38) 

𝑀𝑆𝑅𝑑

= 𝑀𝑖𝑛 (
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒𝑑 ,
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑠ℎ𝑖𝑝𝑒𝑚𝑛𝑡 𝑟𝑎𝑡𝑒𝑑, 𝑆𝐶𝑑𝑡

)      ∀𝑑.
(39) 

𝐷𝑆𝑅𝑑𝑟

= 𝑀𝑖𝑛 (
𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟 𝑜𝑟𝑑𝑒𝑟𝑟 , 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑑,

𝑆𝐷𝐼𝑑𝑟𝑡
) 

 ∀𝑟, 𝑑. 

(40)

𝑅𝑆𝑅𝑟 = 𝑀𝑖𝑛(𝑑𝑟𝑡 , 𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑟 , 𝑆𝑅𝑟𝑡)     ∀𝑟. (41) 

5. Results and Discussion

The benefits of the optimization-SBO model are 
examined by conducting empirical tests and comparing 
it with both the SBO and optimization methods. The 
numerical experiment is conducted on a scaled-down 
scenario, including three customer zones, retailers, 
and distributors, one production center, two suppliers, 
and a total of two one-year periods. The inventory and 
cash dynamics resulting from the SBO and 
optimization-SBO models are depicted in Figures 3(a)-
(d) and 4(a)-(d), respectively. By utilizing optimal
values for raw material order quantity, production rate,
and shipment rate between SC members within the SD
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simulation model, the optimization-SBO approach 
proves to be more efficient in managing the cash and 
inventory of SC members. The implementation of 
optimization-SBO leads to a reduction in inventory 
peaks and a decrease in the oscillation range of 
inventory levels for SC members. Additionally, the 
inflow and outflow of cash in the optimization-SBO 
model are lower compared to the SBO model. The 
optimization-SBO model's lower inventory and cash 
levels contribute to decreased inventory and cash costs 
compared to the SBO model. As a result, the 
optimization-SBO model achieves an EVA of £38,045, 
which is 16% higher than the EVA obtained from the 
SBO model, amounting to £32,840. Through empirical 
testing, the optimization-SBO model demonstrates 
superior performance by effectively managing 
inventory and cash, leading to improved financial 
outcomes for the SC. 

Figure 2. Inventory and cash dynamics for the SC members obtained 
from SBO model. 
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Figure 3. Inventory and cash dynamics for the SC members obtained 

from SBO model.  

To compare the performance of the optimization-SBO and 
SBO models with the optimization model, a series of 10 
random realizations of macroeconomic parameters, 
including short-term interest rate, long-term interest 
rate, risk-free rate of interest, and expected return of the 
market, are generated uniformly by varying these 
parameters within the range of [-15%, +15%]. These 
generated parameters are then utilized as inputs for the 
optimization, SBO, and optimization-SBO models to 
calculate the EVA for each model and realization. The 
resulting EVAs from all models for each realization are 
presented in Table 1. 

The average EVA obtained from the optimization model is 
17% higher than the SBO model and 1.2% higher than the 
optimization-SBO model. This disparity arises because the 
optimization model disregards the dynamics of inventory 
and cash in the SC, unlike the SBO and optimization-SBO 
models. Consequently, the recommended cash and 
inventory levels at SC members by the optimization model 
are lower than the levels recommended by the SBO and 
optimization-SBO models. 

In terms of variability, the standard deviation of EVAs 
obtained from the optimization-SBO model is 61% lower 
than that of the SBO model and 95% lower than that of the 
optimization model. This indicates that the optimization-
SBO model exhibits greater robustness against 
fluctuations in macroeconomic parameters compared to 
both the SBO and optimization models. This advantage 
stems from the fact that the optimization-SBO model 
identifies optimal values for inventory and financial 
decision parameters (as shown in Eq. (38)) and utilizes the 
minimum function to ensure the feasibility of production 
and distribution values (as shown in Eq. (39)-(43)). On the 
other hand, the SBO model only determines optimal values 
for inventory and financial decision parameters, while the 
optimization model solely identifies optimal values for 
production and distribution values without considering 
the dynamics of physical and financial flows in the SC. 

Table 1. Sensitivity analysis on the models 

No. of 
realization 

MILP model SBO model 
MILP-SBO 

model 

1 39964 32893 37993 

2 39626 32901 37870 

3 39979 32667 37953 

4 37070 32574 37922 

5 38070 32543 38003 

6 37651 32750 38074 

7 37565 32808 37904 

8 40123 32984 38016 

9 37235 33111 37919 

10 37061 32703 38068 

Mean 38434.4 32793.4 37972.2 

Standard 
deviation 

1252.41 163.97 62.99 

The number of iterations required to fulfill the stopping 
criterion, which is defined as no improvement in the EVA 
value obtained from the optimization-SBO model, is 
presented in Table 2. In each iteration, the GA was 
executed 15 times. The findings demonstrate that the 
maximum number of stopping iterations is three. 
However, it is important to note that proving the rapid 
convergence of the EVA obtained from the optimization-
SBO model for all test outcomes is not feasible since the GA 
is a stochastic search algorithm, meaning its results can 
vary due to its inherent randomness. 

Table 2. Convergence of EVA obtained from optimization-SBO model. 

Iteration 
number 

Fitness value 
Worst 
(Min) 

Best 
(Max) 

Mean Standard 
deviation 

1 35951 36674 36548 47.29 
2 37163 37794 37658 26.24 
3 37956 38084 38045 10.34 
4 37956 38076 38023 9.67 

Table 3 presents the results of comparing the EVA values 
obtained from the optimization-SBO model with those 
obtained from the optimization and SBO models. The 
optimization-SBO approach demonstrates superior 
performance over the SBO approach by effectively 
reducing the levels of cash and inventory within the SC 
(SC). 

Table 3. EVA obtained from optimization-SBO model.  

EVA 
(GBP) 

Number 
of 

iterations 

Percentage 
difference between 
the optimization-
SBO and MILP 
models 

Percentage 
difference between 
optimization-SBO 
and SBO models 

38045 3 -1.89% +15.85%

6. Conclusions

By incorporating the financial aspect of SC
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management (SCM) into SC planning models, the 
availability of financial resources for implementing 
planning decisions can be ensured, leading to potential 
savings in financial resources (Hofmann et al., 2023). 
To address this, we have developed a simulation-
optimization framework that integrates financial flow 
modeling into an SC planning problem. This 
methodology combines simulation and optimization 
techniques to determine optimal SC decisions while 
accounting for complexities such as nonlinear 
relationships, delays, and feedback loops that exist in 
both financial and physical flows within SCs. 

Previous literature on simulation-optimization in SCs 
has focused solely on optimizing the decision 
parameters of simulation models, without providing 
optimal values for the decision variables within these 
models. To bridge this gap, our study introduces a 
simulation-optimization model that identifies optimal 
values for both decision variables (e.g., product flows 
among SC members and production rates) and decision 
parameters (e.g., payables and receivables policies) 
within the simulation model. By employing this 
developed simulation-optimization model, we were 
able to significantly reduce inventory levels for SC 
members and the amount of cash held within the SC. 
Additionally, the EVA of the SC increased by 
approximately 16%, from £32,840 to £38,045. 

In this study, we utilized System Dynamics (SD) 
simulation, but future research could explore the 
performance of optimization-SBO models that 
incorporate other simulation techniques. Furthermore, 
the developed optimization-SBO model in this study 
could be extended to incorporate multi-objective 
optimization, allowing for the consideration of 
multiple performance criteria in SC planning problems. 
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