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Abstract
In present-day major financial markets around the world, adaptive automated trading systems are responsible for many more
transactions than are human traders, and human traders have largely been replaced by trading machines that can process
super-human quantities of data and react to market events at super-human speeds: this paper reports new results from a high-fidelity
simulation of such highly automated financial markets, populated by minimal adaptive trading strategies, and presents results
showing that competition between trading systems leads to unstable market dynamics and convergence on economically suboptimal
outcomes. The simulations reported here used the public-domain open-source market simulator BSE, which offers an accurate model
of a contemporary limit-order-book financial exchange, which was then extended by adding a collection of individual adaptive
automated trading entities (‘traders”), each of which uses a simple stochastic hill-climbing optimizer to adapt its zero-intelligence
trading strategy over time, trying always to improve profitability. The traders interact and transact with each other on sub-second
timescales, but this paper focuses on the simulated market’s dynamics over extremely long periods of times (hundreds of days, during
which time many hundreds of millions of transactions can occur) and shows that while the system can remain in seemingly stable
states for protracted periods, the overall long-term dynamics of the system can be unstable and economically inefficient. The extended
BSE source-code written for these simulations is freely available on GitHub, for use by other researchers.
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1. Introduction

In attempting to understand and predict the fine-grained
dynamics of financial markets, there is a long tradition of
studying simulation models of such markets. Simulation
studies nicely complement the two primary alternative
lines of enquiry: analysis of real market data recorded
at fine-grained temporal resolution, as is studied in the
branch of finance known as market microstructure; and run-
ning carefully planned experiments where human subjects
interact in artificial markets under controlled laboratory
conditions, i.e. experimental economics. Simulation mod-
elling of financial markets very often involves creating
agent-based models (ABMs) that populate a market mech-
anism with some number of trader-agents: autonomous
entities that have “agency” in the sense that they are em-

powered to buy and/or sell items within the particular mar-
ket mechanism that is being simulated. This approach,
known as agent-based computational economics (ACE), has
a history stretching back for more than 30 years: for sur-
veys see Farmer et al. (2005); Ladley (2012); Axtell and
Farmer (2018). Over that multi-decade history, a small
number of specific zero-intelligence (ZI) and/or minimal-
intelligence trader-agent algorithms, i.e. precise mathe-
matical and procedural specifications of simple but sur-
prisingly effective trading strategies, have been frequently
used for modelling various aspects of financial markets,
and the convention that has emerged is to refer to each
such strategy via a short sequence of letters, an acronym or
abbreviation reminiscent of a stock-market ticker-symbol.
Notable trading strategies in this literature include (in
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chronological sequence): SNPR (aka Kaplan’s Sniper, as
described in Rust et al. (1992)), ZIC (Zero Intelligence Con-
strained: Gode and Sunder (1993)); ZIP (Zero Intelligence
Plus: Cliff (1997)); GD (Gjerstad-Dickhaut: Gjerstad and
Dickhaut (1998)); MGD (Modified GD: Tesauro and Das
(2001)); GDX (GD eXtended: Tesauro and Bredin (2002));
HBL (Heuristic Based Learning: Gjerstad (2003)) and AA
(Adaptive Aggressive: Vytelingum et al. (2008)).

Of these, the seminal ZIC by Gode and Sunder (1993) is
noteworthy for being both highly stochastic and extremely
simple, and yet it gives surprisingly human-like market
dynamics; GD and ZIP were the first two strategies to be
demonstrated as superior to human traders, a fact first es-
tablished in a landmark paper by IBM researchers Das et al.
(2001) (see also: De Luca and Cliff (2011a,b); De Luca et al.
(2011)), which is now commonly pointed to as initiating
the rise of algorithmic trading in real financial markets;
and until very recently AA was widely considered to be
the best-performing strategy in the public domain. With
the exception of SNPR and ZIC, all later strategies in this
sequence are adaptive, using some kind of machine learn-
ing (ML) or artificial intelligence (AI) method to modify
their responses over time, better-fitting their trading be-
havior to the specific market circumstances that they find
themselves in, and details of these algorithms were often
published in major AI/ML conferences and journals.

In a recent paper, Cliff (2021) I introduced a
parameterised-response zero-intelligence (PRZI) trad-
ing algorithm, in which the “urgency” of trader i is
controlled by a single continuous scalar strategy-value
si ∈ [–1.0, +1.0, ] ∈ R: if si = 0.0, a PRZI trader behaves
identically to ZIC, which generates quote-prices as
draws from a uniform random distribution; but as si is
moved closer to +1.0 its trading activity becomes more
urgent (i.e., the trader alters the distribution that its
quote-prices are drawn from, thereby biasing the prices
it quotes in the market toward values more likely to be
snapped up by a willing counterparty, but yielding less
profit for the trader); and as si is moved closer to -1.0
the trading strategy becomes more “relaxed” (i.e., it
biases its quote-prices toward make more more profit,
which are hence less likely to be attractive to potential
counterparties). At the extremes, when a PRZI trader
i has si = –1.0 its trading strategy is equivalent to the
maximally-relaxed SHVR strategy introduced in Cliff
(2012); and when si = +1.0 the PRZI trader is acting as the
maximally urgent GVWY strategy, also introduced in Cliff
(2012) and explained further in Cliff (2018). PRZI was
developed for use in a variety of contexts in simulation
modelling of contemporary financial markets, one of
which was to explore the co-evolutionary dynamics of
markets in which all traders are simultaneously adapting
their trading strategy, each trying to improve their own
profitability, but each burdened by the uncertainty and
complexity of trying to adapt to a market environment in
which every other trader is also adapting, also changing
its strategy in real time, all the time.

This paper presents the first results from such simu-
lation studies, populating the public-domain BSE market
simulator (an open-source ABM of a limit-order-book fi-
nancial exchange: see Cliff (2012, 2018)) with adaptive
PRZI traders, and studying the long-term dynamics of
co-evolutionary markets, exploring whether they con-
verge on stable equilibria, and/or whether they converge
on economically efficient outcomes. The results presented
here demonstrate that the dynamics can be unstable, with
the system’s constant co-evolutionary “progress” eventu-
ally leading in cycles, back to states that it had previously
evolved away from; results shown here also demonstrate
that the system can evolve to economically stable but sub-
optimal sets of conditions. Avenues for further research
are discussed at the end of this paper. As supplementary
background material, Appendix A gives a brief introduc-
tion to the Recurrence Plot visualisation technique used
here; and Appendix B gives an overview of the BSE simula-
tor’s system architecture.

2. Background

In the market-simulation literature surveyed here, typ-
ically each trader in the market is assigned a role, either
buyer or seller, with the number of buyers being NBuy, the
number of sellers NSell, and the total number of traders in
the market being NT = NBuy + NSell. Each buyer(seller) is
periodically assigned an order to buy(sell) a fixed quan-
tity (very often a single item) of the single arbitrary ab-
stract commodity that is being traded on the market, along
with a private (secret, known only to that trader) limit
price denoted by λ, which for a buyer(seller) is the max-
imum(minimum) unit-price that they can buy(sell) the
commodity at. Traders accrue profit (sometimes referred
to as utility or surplus): an individual trader i’s profit πi on
a transaction at price p is given by πi = |p – λi|.

If we were to allow only a single PRZI trader i to adap-
tively vary its si value, trying to find the best setting of si
relative to whatever distribution of sj 6=i values is present in
the market (i.e., relative to the current mix of other strate-
gies in the market) then we could say that i is evolving its
value of si to try to find an optimum, the most profitable
setting for its strategy parameter, given the unchanging
set of fixed strategies that it is pitted aainst in the market.
But when every PRZI trader in the market is simultane-
ously adapting its s-value, the system is co-evolutionary
because what is an optimal setting of the s parameter for
any one trader will likely depend on the s-values currently
chosen by many or perhaps all of the other traders in the
market. That is, the profitability of i is dependent not only
on its own strategy value si but also on many or perhaps
all other sj 6=i values in play at any particular time, and in
principle all the strategy values will be altering all the time.

A primary motivation for studying such co-
evolutionary markets with adaptive PRZI traders is
the desire to move beyond prior studies of markets
populated by adaptive automated traders in which the
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“adaptation” merely involves selecting between one of
typically only two or three fixed strategies (as in, e.g.,
Walsh et al. (2002); Vytelingum et al. (2008); Vach (2015).
The aim here is to create minimal model markets in which
the space of possible ZI strategies is infinite, as a better
approximation to the situation in real financial markets
with high degrees of automated trading.

Prior researchers’ concentration on markets in which
the traders can choose one of only two or three fixed strate-
gies can be traced back to the sequence of publications
that launched the trading strategies MGD, GDX, and AA
(i.e., Tesauro and Das (2001); Tesauro and Bredin (2002);
Vytelingum et al. (2008)), and the papers in which these
strategies were shown to outperform human traders (i.e.
Das et al. (2001); De Luca and Cliff (2011a,b)). All of these
works relied on comparing the strategy of interest with
a small number of other strategies in a series of carefully
devised experiments: e.g., GDX was introduced in Tesauro
and Bredin (2002), and was compared only to ZIP and GD.

In aiming for a fair and informative comparison, ex-
perimenters were immediately faced with issues in design
of experiments (see e.g. Montgomery (2019)): how best to
compare strategy S1 with strategies S2 and S3 (and S4 and
S5 and so on), given the finite time and compute-power
available for simulation studies, and the need to control
for the inherent noise in the simulated market systems.

Early comparative studies such as Das et al. (2001) lim-
ited themselves to running experiments that studied the
performance of a selection of trading strategies in three
fixed experiment designs: homogeneous (in which the
market is populated entirely by traders of a single strategy-
type); one-in-many (OIM: in which a homogeneous mar-
ket was altered so that all the traders were of strategy type
S1 except one, which was of type S2); and balanced-group
(BG: in which there was a 50:50 split of S1 and S2, balanced
across buyers and sellers, with allocation of limit-prices
set in such a way that for each trader of type S1 with a
limit price of λ1 there would be a corresponding trader
of type S2 also assigned a limit price of λ1). There were
good reasons for this experiment design, and the results
were informative, but they rested on only ever comparing
two strategies S1 and S2 in markets with a total number of
traders NT where the ratio of S1:S2 was one of either NT:0
(i.e., homogeneous); or (NT – 1):1 (i.e., OIM); or NT

2 : NT
2 (i.e.,

BG). This approach left open the question of whether the
performance witnessed in one of these three special cases
generalised to other possible ratios, other relative propor-
tions of the two strategies in the market.

A method by which that open question could be resolved
was developed by Walsh et al. (2002) who borrowed the
technique of replicator dynamics analysis (RDA) from evo-
lutionary game theory (see e.g. Maynard Smith (1982)).
In a typical RDA, the population of traders is initiated with
some particular ratio of the NS strategies being compared,
and the traders are allowed to interact in the market as per
usual, but every now and again an individual trader will be
selected via some stochastic process and will be allowed to

mutate its current strategy Si to one of the other available
strategies Sj 6=i if that new strategy appears to be more prof-
itable than Si. In this way, given enough time, the market
system can be started with any possible ratio of the NS
strategies, and in principle it can evolve from that start-
ing point through other system state-vectors (i.e., other
ratios of the NS strategies) to any other possible ratio of
those strategies. However in practice the nature of the evo-
lutionary trajectories of the system, i.e. the paths traced
by the time-series of state-vectors of the system, will be
determined by the profitability of the various strategies
that are in play: some points in the state-space (i.e., some
particular ratios of NS strategies) will be unprofitable re-
pellors, with the evolutionary system evolving away from
them; others will be profitable attractors, with the system
converging towards them; and if the system converges to
a stable attractor then it’s at an equilibrium point, or poten-
tially on a repeating sequence of equilibrium points, i.e. a
limit cycle. Walsh et al’s 2002 paper showed the results of
RDA for market systems in which NS = 3, comparing the
trading strategies GD, SNPR, and ZIP, and visualised the
evolutionary dynamics as plots of the two-dimensional
unit simplex, an equilateral triangular plane with a three-
variable barycentric coordinate frame.

Similar plots of the evolutionary dynamics on the 2D
unit simplex were subsequently used by other authors
when comparing trading strategies: see e.g. Vytelingum
et al. (2008); Vach (2015), and those authors also limited
themselves to studies in which the traders in the market
could switch between one of only NS = 3 different discrete
strategies. And, in this strand of research, three-way com-
parisons seem to then have become the method of choice
primarily because evolutionary trajectories through state-
space, and the location and nature of any attractors and
repellors on the space, is readily renderable as a 2D simplex
when dealing with a NS = 3 system, but rapidly gets very
difficult, to the point of impracticability, as soon as NS > 3.
Higher-dimensional simplices are mathematically well-
defined, but very difficult to visualise: the four-variable
simplex is a 3D volume, a tetrahedron; and more generally
the NS-variable simplex is an NS – 1-dimensional volume
– so if we wanted to study the evolutionary dynamics of a
six-strategy system, we would need to find a way of use-
fully rendering projections of the 5-D simplex, or we need
to find alternative methods of visualisation and analysis.

However, as first shown by Vach (2015) and later con-
firmed in more detailed studies by Snashall and Cliff
(2019); Rollins and Cliff (2020) and Cliff and Rollins (2020),
when the complete state-space of all possible ratios of
discrete strategies is exhaustively explored, the domi-
nance hierarchies indicated by the simple OIM/BG analy-
ses are sometimes overturned. That is, if strategy S1 out-
performed strategy S2 in both the OIM and the BG tests,
that would usually be taken as evidence that S1 generally
outperformed S2, that S1 was “dominant” in that sense;
but actually if markets were set up with some ratio of S1:S2
other than the OIM or BG ratios, then in those markets
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S2 would dominate S1 – that is, the direction of the domi-
nance relationship between S1 and S2 can often depend on
the ratio of S1:S2, their relative proportions of the overall
population. Furthermore, while S1 might dominate S2 in
two-strategy experiments (i.e., where NS = 2), plausibly S2
would dominate S1 in experiments where values of NS > 2:
the indications are that as yet there is no single master-
strategy that dominates all others in all situations; what
strategy is best will depend on the specific circumstances.

By populating a model market entirely with adaptive
PRZI traders we create a minimal test-bed for exploring is-
sues of market efficiency and stability in situations where
all traders are simultaneously co-evolving in an infinite
continuous space of strategies. The state at time t of such
a market with NT traders in it can be characterised as an
NT-dimensional vector of s-values, denoted by~S(t), identi-
fying a single point in the NT-dimensional hypercube that
is the space of all possible system states, and that point
will move over time as the traders each adapt their s values.
We can attempt to identify attractors and repellors in this
hypercube, but we will need new visualisation techniques:
we’ll need to leave simplices behind.

There are many ways in which a PRZI trader could be
made to dynamically adapt its s-value in response to mar-
ket conditions. Here, in the spirit of minimalism asso-
ciated with studies of ZI traders, I use a crude and sim-
ple stochastic hill-climbing algorithm, of the sort that
might be found as an introductory illustrative straw-man
sketch in the opening chapter of a book on machine learn-
ing. To keep with the tradition of naming ZI/MI trading
algorithms with short acronyms, I’ll refer to this PRZI
Stochastic Hill-Climber as PRSH (pronounced “pursh”).
PRSH is defined in Section 3, and then some illustrative
baseline results from experiments in which a single PRSH
trader adapting in markets where all other traders are play-
ing fixed strategies are presented in Section 4. After that,
Section 5 shows results from experiments in which all
traders are PRSH, and hence in which the market is maxi-
mally co-evolutionary. The Python source-code for PRSH
has been released as free-to-use open-source, in BSE (see
Cliff (2012)) to enable other researchers to replicate and
extend the preliminary results shown here.

3. PRSH: a minimal PRZI Stochastic Hill-Climber

At any time t, a PRSH trader i has a setSi,tm that was created
at time tm ≤ t and that consists of k ∈ Z+ different PRZI
strategy values s0,tm to sk–1,tm (i.e., |S| = k > 1). Although
t is continuous in this model, alterations to Si,t happen
only occasionally. After an initialisation step in which the
k strategies are each assigned a value si,t0 ∈ [–1, +1] ∈ R
via a genesis function G(.), PRSH enters into an infinite
loop: let tm denote the time at which a new iteration of the
loop is initiated; in each cycle of the loop a PRSH trader
first evaluates each of its k strategies in turn, trading with
each of them as the sole exclusive strategy for at least a
minimum period of time ∆t, such that all k have been eval-

uated by time tn ≥ tm + k∆t; after that, it ranks the strate-
gies by some performance or fitness metric F, and copies
the top-ranked strategy (the elite) at time tn into s0,tn ; it
then creates k – 1 new ‘mutants’ of s0,tn , via a stochastic
mutation functionM(s0,tn ), and this set of new strategies
sj,tn:1≤j≤k–1 then replaces the old Si,tm , becoming Si,tn , at
which point it loops back for the next iteration (and hence
in that next iteration the value tm is what was tn in the
prior iteration).

This definition leaves the experimenter free to decide
certain key details when implementing PRSH:

• The choice of k and of ∆t together determine the speed
of adaptation: PRSH will generate a newSti at most once
every k∆t seconds: i.e., k∆t is the minimum time-period
between successive mutations, where each mutation is
an adaptive step on the underlying fitness landscape. If
you want a PRSH to make Nsteps adaptive steps on the
fitness landscape in the course of an experiment, that
experiment needs to run for > k∆tNsteps seconds.

• Exactly how the set S0 is created at initialisation is left
open. Naturally si,0 = U(–1, +1) ∈ R; i ∈ {0, . . . , k – 1} is
the least constrained, but there may be circumstances
where it is informative to use some other method, e.g.
si,0 = c;∀i for some constant c such as zero or±1.

• The stochastic functionM : [–1, +1] ∈ R 7→ [–1, +1] ∈
R that creates new mutants of the elite s0,tk is similarly
unspecified. Treating each mutation as the addition of
a random draw from a distribution with zero mean and
nonzero variance makes intuitive sense, and then either
truncating or using ring-arithmetic to ensure that the
function maps to [–1, +1]. In the experiments shown
below,M(s0,tk ) = s0,tk +N (0,σ) with σ = 0.01. Plausibly
a simulated-annealing approach could be introduced,
steadily reducing σ as time progresses, but that is not
explored here.

• For k > 2, questions immediately arise over what is
the best way of generating the k mutants. For instance
if k = 3 we could arrange a set of two different M
functions, one per mutant, such that s1,tk < s0,tk and
s2,tk > s0,tk and hence PRSH is always sampling s-values
at random magnitudes either side of the current elite
strategy; and for k = 5 we could similarly arrange the
mutants such that two are generated either side of the
elite, one a small random distance away, and the other a
much larger random distance away; such decisions are
left as an implementation issue. In the work reported
here we simply generate k – 1 mutants viaMwith no
additional constraints.

• Finally, each iteration of the loop requires deciding
which of the k strategies is the current elite, via the
fitness functionF , and there are many possible ways to
do that. The method used here was to rank the k strate-
gies at time tk by the amount of profit generated per
unit of time, denoted by pps (profit per second), such
that the elite s0,tk strategy has the highest pps. To help
avoid the hill-climber from becoming trapped on lo-
cal maxima, if the difference between the pps scores of
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the two highest-ranked s-values in S is less than some
threshold εs, then one of the two is chosen at random
to be the elite for that iteration of the loop.

In essence, PRSH with k strategies is a very primitive
k–armed bandit, and all of the extensive multi-armed ban-
dit (MAB) literature (such as Gittins et al. (2011); Myles
White (2012); Lattimore and Szepesvari (2020)) is poten-
tially of relevance here, but ignored: again, the intention
here is not to create the best adaptive-PRZI trader, instead
it is merely to have a simple minimal adaptive-PRZI algo-
rithm to act as a proof of concept and to enable an initial
set of exploratory and illustrative experiments involving
populations of adaptive-PRZI traders: PRSH does that job.

4. Evolution of Strategy in a Single PRSH Trader

Before studying co-evolving populations of PRSH traders,
it is informative to explore situations in which there is
only a single PRSH trader in the market, and all other
traders are one or more of the three ZI strategies that are
spanned by PRSH/PRZI, i.e. GVWY, SHVR, and ZIC. In such
situations we can talk of how the PRSH trader’s strategy
evolves over time, but not of co-evolution because the rest
of the traders in the market are non-adaptive. A single-
PRSH-trader market is sufficiently simple that it eases the
introduction of concepts that become significantly more
complex in fully co-evolutionary markets.

First, we can visualise the fitness landscape for a single
PRSH trader by setting up a market in which, purely for the
sake of generating appropriate visualization data, we give
the PRSH a large k, and initialize S0 to a set of regularly-
spaced si,0 values across the range [–1, +1], and then plot
the pps fitness of each strategy in the first evaluation.
Specifically, set: S0 = {si,0 : si,0 = 2i

k–1 – 1; i ∈ {0, . . . , k – 1}}
And let ∆S = 2/(k – 1), the step-size in our mapping of
the fitness landscape. So for example with k = 21 we have
∆S = 0.1 and S0 = {–1, –0.9, –0.8, . . . , +0.9, +1.0}.

For brevity, and without loss of generality, the discus-
sion that follows in the rest of this section concentrates
only on the case of a single PRSH seller in a market that is
otherwise entirely populated by traders running nonadap-
tive strategies. The arguments that are made here for a
single PRSH seller could just as easily be made for a single
PRSH buyer, but to do both here would be overkill.

Figure 1 shows fitness landscapes plotted at ∆S = 0.05
for a single PRSH seller when all other traders in the mar-
ket are either (from top to bottom) SHVR, ZIC, or GVWY:
i.e., a progression from all other traders in the market
being maximally relaxed (SHVR) through to maximally
urgent (GVWY). In all experiments reported in this paper,
all buyers had the same limit price λb and all sellers had
the same limit price λs > λb, i.e. the supply and demand
schedules were ‘box’ style, with perfect elasticity of sup-
ply and of demand. When generating the landscapes for
SHVR and ZIC the number of buyers (NBuy) and the num-
ber of sellers (NSell) were each 30, i.e. NT = 60, but in the

landscape for GVWY results from NT = 60 are overlayed
with additional results from iid repetitions of the same
experiment where NT = 30 and where NT = 120 (in each
case NBuy = NSell = NT/2), to demonstrate that the overall
shape of the fitness landscape varies very little with re-
spect to the NT = 60 case when the number of traders is
halved or doubled. As can be seen from Figure 1, in the
single-PRSH case the fittest (most profitable) strategies
– i.e., the global maxima – are all at the high end of the
range, at or close to s = +1, but in each landscape there is
also a local maxima at/near s = –1.

Figure 1. Fitness landscapes for a single PRSH seller in a market where all
other traders are homogeneously playing the same fixed strategy: hori-
zontal axis is PRSH strategy value s; vertical axis is profit per second (pps)
recorded by the single PRSH trader using s as its strategy. Strategy evalua-
tion time ∆t is 7200s. Data points are plotted at strategy-steps of ∆S = 0.01.
Upper graph is when all other traders are playing the fixed SHVR strategy;
middle graph is when all other traders are ZIC; lower graph is when all other
traders are GVWY. In the lower graph only, data is shown for iid repetitions
of the experiment with the number of traders in the market (denoted by
NT ) being set to 30 (data-points marked by open triangles), 60 (marked by
open circles), and 120 (marked by plus-symbols).

The GVWY fitness landscape for a single PRSH seller
shown at the bottom of Figure 1 clearly has a global max-
imum at s ≈ 0.8. If the PRSH adaptation mechanism is
operating as intended, when the single PRSH seller is ini-
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Figure 2. Hourly strategy value over 30 days of round-the-clock trading
for a single PRSH seller in a market populated with 29 GVWY sellers and 30
GVWY buyers: horizontal axis is time in seconds; vertical axis is the PRSH
trader’s strategy value s, which is initialized at the start of the experiment to
s = 0, i.e. to the ZIC strategy. The s-value evolves steadily toward a range of
values close to the global optimum strategy identified in the bottom fitness-
landscape plot of Figure 1, and then stabilises to that range of values for the
remainder of the experiment.

tialised with s = 0 and allowed to adapt for sufficiently long
then its s value should converge to roughly 0.8, and then
hold at that value. To demonstrate this, Figure 2 shows
the PRSH trader’s s value, plotted once per hour, in a sim-
ulation of 30 continuous days of 24-hour trading: as can
be seen, from its initial value of zero there is a steady rise
in s over the first≈750,000sec of trading (i.e., roughly the
first 8.5 days), after which the system stabilises to s-values
that noisily fluctuate around the 0.85 level. To smooth out
some of the noise, define ŝ as the 12-hour simple moving
average of the raw hourly s data: Figure 3 shows the ŝ line
for the raw hourly data shown in Figure 2, along with ŝ
lines from a further four iid repetitions of the same exper-
iment. For the discussion that follows, let’s call trader i’s
ŝi value at the end of an experiment the terminal strategy
for i in that experiment, and define the set ŜT as the set of
terminal strategies from a population of PRSH traders that
have co-evolved in a particular market environment. For
the current discussion of the merely evolutionary (i.e., not
co-evolutionary) adaptation of single PRSH traders, we
can fill ŜT with the set of terminal strategy values arising
from NR iid repetitions of a particular experiment: in Fig-
ure 3, we have NR = 5 and ŜT = {0.86, 0.87, 0.88, 0.88, 0.93}.
As NR takes on larger values, it is natural to summarise
values in the terminal strategy set ŜT as a frequency his-
togram or kernel density estimate, and from there to note
whether the distribution of values in the terminal strategy
set is unimodal or multimodal, either by eyeballing the
distribution or density estimate, or by applying a test of
modality such as those proposed by Hartigan and Hartigan
(1985) or Chasani and Likas (2022).

5. Strategy Co-Evolution in All-PRSHMarkets

As a first illustration of the dynamics of a fully co-
evolutionary ZI market system, Figure 4 shows the ŝi val-

Figure 3. Smoothed PRSH strategy values from multiple 30-day experi-
ments, each with a single PRSH seller in a market populated by 29 GVWY
sellers and 30 GVWY buyers: horizontal axis is time in seconds; vertical
axis is 12-hour moving-average strategy value (denoted by ŝ). Black line
is the ŝ trace for the raw hourly s-data shown in Figure 2; the four grey
lines are each the ŝ traces from four iid repetitions of the same experiment.
After 100,000 seconds (roughly 11 days) of trading, all five ŝ traces have
evolved to a steady state close to the global optimum strategy identified in
the bottom fitness-landscape plot of Figure 1, and remain clustered around
that value for the remainder of the experiment. The set of final ŝ values
recorded at the end of each experiment is referred to as the terminal strategy
set, denoted by ŜT . Here, ŜT = {0.86, 0.87, 0.88, 0.88, 0.93}: see text for
further discussion.

ues over time for a 30-day experiment in which the mar-
ket is populated by 30 PRSH sellers and 30 PRSH buyers,
all of which are initialized to have si,0 = 0: i.e. an exper-
iment directly comparable to the results from the zero-
initialized single-PRSH system explored in the previous
section, except that here the fitness landscape for any one
trader will depend on the distribution of strategy-values
for all the other traders in the market, and in which the
fitness landscape will be varying over time, in principle al-
tering each time any one PRSH trader changes its strategy
to a new value. Again, a ŜT terminal strategy set can be
assembled from the final ŝi values of the individual traders
that co-evolved against each other in the single market
experiment: the corresponding terminal strategy set dis-
tribution is again unimodal: in this experiment, all sellers
converge on strategy-values in [≈ +0.55,≈ +0.85]; mul-
tiple iid repetitions of this market experiment generate
much the same results.

Further investigation reveals that the unimodal dis-
tribution of terminal strategies in experiments like the
one illustrated in Figure 4 is an artefact of the decision
to initialize all traders with si,0 = 0: if instead we set
si,0 = U(–1.0, +1.0) so that the initial set of strategy values
in the population of traders is uniformly distributed over
the entire range of possible strategies, we see qualitatively
different results: for both the buyers and the sellers the dis-
tribution of terminal strategy values is then multimodal.

The development of multimodal terminal strategy dis-
tributions is not the only change resulting from switching
the initial state from s∀i = 0.0 to s∀i = U(–1.0, +1.0). In
Figure 4, over the 30 simulated days, the dynamics of the
system’s co-evolution through strategy space are bipha-
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Figure 4. Smoothed (ŝi,t) strategy values for each of 30 PRSH sellers in a
market experiment lasting for 30 days of continuous trading, where all
traders are initialized to have si,0 = 0. Horizontal axis is time in seconds;
vertical axis is the 12-hour moving average strategy ŝi,t of individual traders.
The co-evolutionary dynamic is biphasic: in the initial “adaptive transient”
phase over the≈ 12 days (i.e.,≈1,000,000 seconds) the system settles to a
unimodal steady-state centered on si ≈ 0.7; in the steady-state phase the
strategy values of individual traders rise and fall but the overall distribution
does not vary significantly.

sic: an initial phase of roughly 12 days in which all traders
increased their s values from zero to≈ 0.7; followed by a
steady-state phase lasting for the remainder of the experi-
ment where the population of s values wandered randomly
around the 0.7 level In contrast, when s∀i = U(–1.0, +1.0)
the system shows no such long-term stability over the
same time-period, as is illustrated in Figure 5 and ex-
plained in the caption to that figure: even after the sys-
tem’s distribution of strategies has been relatively stable
for a period of nine days, an equilibrium or stasis in which
the traders have each executed roughly 150,000 transac-
tions, chance co-evolutionary interactions can result in
the stasis ending and the system entering a fresh period
in which the strategies are in flux.

To illustrate the longer-term dynamics of this system,
Fig. 6 shows buyer-strategy co-evolutionary time series
similar to that illustrated in Fig. 5 from eight iid repeti-
tions of an experiment that lasted 10 times longer, i.e. 300
simulated days. As is clear from the figure, although stable
modes do occur in each experiment, individual trader’s
strategy-values will sometimes transition from one mode
to another, with no clear pattern or predictability to the
timing and/or direction of these transitions.

Thus far, to save space, only the co-evolutionary tra-
jectories of the strategies in the population of buyers have
been shown. Naturally, each of the eight buyer-strategy
time-series graphs shown in Figure 6 has a corresponding
seller-strategy time-series graph, but in this specific set
of experiments there was much less variation in the out-
comes for the seller population: rather than showing all
eight, Figure 7 shows one representative example; qualita-
tively, the other seven are all essentially identical to this.

The co-evolutionary dynamics of strategy values in
these model markets is not the only factor of interest: an-

Figure 5. Smoothed (ŝi,t) strategy values for each of 30 PRSH buyers in a
market experiment lasting for 30 days of continuous trading, simulated
at 60Hz time-resolution, where all traders are initialized to have si,0 =
U(–1.0, +1.0). Horizontal axis is time t, with a vertical gridline every 5
days; vertical axis is the 12-hour moving average strategy ŝi,t of individual
traders, with horizontal gridlines at s intervals of 0.2: for t ≥ 0.5 days (i.e.,
12 hours) the trader’s average strategy value over the preceding 12 hours
is plotted; for t < 0.5 days the trader’s average strategy since the start of
the experiment is plotted. By roughly Day 13 the system has settled into a
state that then persists as a temporary equilibrium or stasis until roughly
Day 22: during the equilibrium phase the modes are at roughly s = –0.9
(n = 6), s = –0.1 (n = 8), s = +0.3 (n = 3), and s = +0.7 (n = 13). After that,
the equilibrium “punctuates”, entering a new phase where first the mode
at –0.9 loses its stability, then the mode at +0.3 seems to merge up into the
mode that was at +0.7 but which now seems to be generally heading lower,
and then the mode at –0.1 seems to dissipate in various directions. In the
nine-days stasis/equilibrium, each trader would execute approximately
150,000 transactions. Clearly the dynamics have not reached a stable state
after 30 days of trading, and longer simulations should be explored.

other equally significant concern is the efficiency of the
markets populated by traders with co-evolving strategies:
something that is illustrated in Figure 8 which shows, for
each of the eight 300-day experiments illustrated in Fig-
ure 6, the total surplus/profit extracted by the traders.
Data-lines show collective total profit extracted by the
30 buyers (denoted here as πB), collective total profit ex-
tracted by the 30 sellers (denoted here as πS), and total
profit extracted by the entire set of 60 traders (denoted
here as πT = πB + πS). In each case, after the initial adap-
tive transient over the first 50 days or less, the buyers’ and
seller’s profit levels stabilise to an approximately constant-
sum relationship, where if πB goes up then πS goes down,
and vice versa. The sumπT that the two populations’ profit-
levels add up to is notably unvarying within any one ex-
periment, but the value that πT settles on varies across
experiments: for example, the experiments at upper-left
and lower-left both have πT ≈ 93 – 95, whereas the upper-
right and the left-hand experiment in the third row from
the top both never see πT go above 90. The underlying
reason for this variation in total profit extracted is illumi-
nated in Figure 9, which shows the inverse relationship
between the number of traders with ‘relaxed’ strategy val-
ues (si < 0) and the total profit extracted: the more relaxed
traders present in the market, the less profit extracted;
despite their constant striving to improve profitability,
traders with strategy values in the relaxed mode seem to
be stuck on a local maximum in the fitness landscape.
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Figure 6. Results from eight iid experiments each otherwise the same as
that illustrated in Figure 5 but instead continued for 300 days. Data lines
show smoothed (ŝi,t) strategy values for each of 30 PRSH buyers in a market
experiment over 300 days of continuous trading, simulated at 60Hz time-
resolution, where all traders are initialized to have si,0 = U(–1.0, +1.0).
Horizontal axis is time t, with a vertical gridline every 50 days; vertical
axis is the 7-day moving average strategy ŝi,t of individual traders, with
horizontal gridlines at s intervals of 0.2. The upper four graphs appear
to show that, after an initial adaptive transient phase, the population of
traders settles into a steady-state bimodal distribution; but the lower four
graphs show that the system does not always quickly converge to such a
steady-state distribution and that co-evolutionary interactions can result
in major changes in the strategy distributions (e.g., a trader switching
from one mode to another) even after 200 or more days of continuous
trading, a period over which each trader would execute roughly 3,500,000
transactions. See text for further discussion.

Figure 7. Time-series of co-evolving seller strategies from one of the eight
experiments for which the buyer strategies were illustrated in Figure 6:
qualitatively, all eight experiments have time series essentially the same
as this one, so only the one is illustrated here. The vast majority of sellers
rapidly shift their strategy-values to around +0.9, but in any one exper-
iment a small number of sellers instead settle on strategy values close
to –1.0. In all cases, these two modes are stable for the remainder of the
duration of the experiment.

Although the time-series of co-evolving strategy val-
ues and histograms of strategy frequency distributions
have served the purposes of this discussion thus far, there
is a need for more sophisticated visualization and anal-
ysis techniques. Our very first studies studies of co-
evolutionary dynamics with a preliminary k = 2 PRSH-
like system, reported in Alexandrov et al. (2022) (which
summarises results from Alexandrov (2021) and Figuero
(2021)) explored the prospects of producing phase por-
traits, graphical characterisations of the global dynamics
of the system, for market sessions in which there are only
two evolving traders, each adjusting their s-values with
the intent of improving their profitability, while all other
traders play fixed strategies: in such a two-PRSH mar-
ket the phase-space of interest is two-dimensional, just
the two evolving strategies, and hence very easy to plot
as a 2D graphic. But for the all-PRSH NT = 60 market
sessions studied here, we need a useful way of plotting
the trajectory of the dynamical system through its 60-
dimensional real-valued phase-space: that is, the strategy
vector ~S(t) ∈ [–1.0, +1.0]NT ∈ RNT .

Thankfully, in recent decades researchers in physics
have developed a set of visualisation and analysis tools
and techniques for such high-dimensional real-valued dy-
namical systems: the dynamics of such systems can be
characterised visually, as a square array of pixels, via the
creation of a recurrence plot (RP), which will often display
macro-scale features that are obvious to the human eye;
and then straightforward image-processing techniques
can be used to generate quantitative statistics that sum-
marise the nature of the RP and the features within it,
an approach known as Recurrence Quantification Analy-
sis (RQA). For readers unfamiliar with RPs and RQA, Ap-
pendix A presents a brief introduction.

Figure 10 shows an RP for a single NT = 60 all-PRSH
market session lasting for 7 days of continuous round-
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Figure 8. Total extraction of surplus/profit for the eight 300-day experi-
ments illustrated in Figure 6: horizontal axis is time in days; vertical axis
is total profit extracted by a group of traders. Data-lines show collective
total profit extracted by the 30 buyers, collective total profit extracted by
the 30 sellers, and total profit extracted by the entire set of 60 traders. In
each case, after the initial adaptive transient over the first 50 days or less,
the buyers’ and seller’s profit levels stabilise to an approximately constant-
sum relationship, where if buyers’ profits go up then sellers’ profits go
down, and vice versa. The sum that the two populations’ profit-levels adds
up to is notably unvarying within any one experiment, but varies across
experiments: for example, the experiments at upper-left and lower-left
both have the sum consistently around 93-95, whereas the upper-right
and the left-hand experiment in the third row from the top both never see
their sum go above 90. See text for further discussion.

the-clock trading, with the strategy-vector ~S(t) recorded
hourly, resulting in a 168×168-pixel plot (i.e., 7×24 = 168)
where the time-difference between rows and columns is
one hour. In all the RPs plotted here, ~S(t) is considered a
recurrence of the state~S(t –∆t) when |~S(t) –~S(t –∆t)| < ε,
using ε =

√
60× 0.052 = 0.387: the maximum distance

possible in this system (i.e., the diameter of the phase-space
in the terminology of the physics literature) is

√
60× 22 =

15.492 (e.g., if [~S(t)]i = +1.0; ∀i and [~S(t–∆t)]i = –1.0; ∀i), so
the value of εused here is≈2.5% of the maximum distance.

As is clear from visual inspection of the RP in Fig. 10,
there are almost always recurrences to the left and below
the diagonal line of identity (LOI) and these recurrences
are typically short-lasting, being roughly 10 pixels or less
(i.e., 10 hours or less) in the first 50 hours of the session,

Figure 9. Inverse relationship between the percentage of traders in the
market playing relaxed strategies (i.e., si < 0) and total profit extracted by
all the traders in the market: horizontal axis is percentage of traders with
si < 0; vertical axis is profit extracted over the final 50 days’ trading (i.e.,
days 250-300) in the experiment. Markers show the arithmetic mean over
that period, with error bars at± one standard deviation, for the eight ex-
periments illustrated in Figure 6. The dashed line shows linear regression;
R2 ≈ 70%.

and then lengthening as the session continues, such that
by the end of the session the recurrences are recorded as
far-distant as roughly 48 hours previously. A commonly-
used RQA summary statistic for this kind of observation
is the trapping time (denoted by TT: see Appendix A for
the definition): for the RP in Fig. 10, the overall TT ≈ 7.25
hours: i.e., the system typically spends 7.25 hours within ε
distance of any particular ~S(t), before co-evolution drives
it away from that area of phase-space; and, given the large
areas of unshaded area in the RP, we can see that once it co-
evolves away from a particular state after a few hours, it
never returns to that state (i.e., no further recurrences are
recorded), indicating acyclic evolution – i.e., continuous
“progress” of the co-evolutionary dynamic.

Figure 11 shows a set of six RPs, from six iid market
sessions with all parameters set to the same values as
used in the experiments illustrated in Figures 6 and 8,
except these six experiments have each been left to run
for 1,500 days. As before, ~S(t) data is recorded hourly, and
the traders interact second-by-second simulated at 60Hz,
trading around the clock, 24hrs/day; and hence these RPs
in their full incarnation are 36000 × 36000 pixels (i.e.,
1500 × 24 = 36000), which of necessity are then down-
sampled for printed reproduction here. As is discussed
in the caption to Figure 11, five of the six sessions show
clear evidence of the co-evolutionary process being cyclic,
in the sense that the system is continuously co-evolving,
taking a very large sequence of adaptive steps in the 60-
dimensional strategy-space, but eventually it returns to
points in strategy space that it previously occupied at an
earlier time in the session. And, surprisingly, the path-
length of these cyclic transits can be extremely long: more
than 1,000 days in one instance. And remember that each
trading day in the session is simulated at 24hrs/day, at 60
frames per second resolution (i.e., the simulation timestep
is 0.0167s), so the 1,000-day cycle occurred after 5.18Bn
timesteps, during which more than a billion transactions
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Figure 10. Example recurrence plot (RP) for a PRSH co-evolutionary market
session: in this experiment (as with the experiments illustrated in Figures 6
and 8) there are 30 PRSH buyers and 30 PRSH sellers (i.e., NT = 60) each
co-evolving their individual strategy s-values, so the collective state of
the system of co-evolving strategy values at time t is a strategy-vector
~S(t) ∈ [–1.0, +1.0]60 ∈ R60. The traders interact continuously, simulated at
60Hz, trading around the clock 24 hours per day, but the~S strategy-vector
is recorded only once every hour. This RP shows the first 7 days of the
market session (i.e., 7× 24 = 168 hours): numeric labels on the axes are
hour-number. The state~S(t) is considered a recurrence of the state~S(t –∆t)
when |~S(t) – ~S(t – ∆t)| < ε, using ε =

√
60× 0.052 = 0.387 (here the

diameter of the phase space, is
√

60× 22 = 15.492, so the value of ε used
here is≈2.5% of that diameter). See text for further discussion.

will probably have taken place. Simulations run for shorter
durations would not have revealed these long-term cycles.

6. Discussion and Conclusion

The results presented here are the first from market sim-
ulations populated wholly by co-evolving parameterised-
response zero-intelligence (PRZI) traders which adapt
their strategies over time using stochastic hill-climbing
(i.e., PRSH), and they demonstrate that such minimally
simple models can exhibit surprisingly rich dynamics,
over extremely long timescales, and also that the stable
attractors in strategy-space are often neither at the ex-
treme points of the range (i.e., si = ±1.0) nor at the mid-
point (si = 0.0) but instead are at ‘hybrid’ points along
the strategy-space, resulting in trading behaviors (quote-
price distributions) with no precedents in the prior liter-
ature. There are a wide range of factors that could be ex-
plored in further work. For example: the particular form
of adaptation used here, the simple stochastic hill-climber
of PRSH, is likely to affect the co-evolutionary dynam-
ics; i.e., it might be more likely to result in traders being
stuck on local maxima in the fitness landscape, in compar-
ison to other more sophisticated adaptation/optimisation
techniques: in Cliff (2022), a follow-on to this paper, I
discuss the use of differential evolution (see e.g., Storn and
Price (1997); Bilal et al. (2020)) instead of stochastic hill-
climbing, which better avoids local maxima. Also the na-
ture of the supply and demand curves in the market can

Figure 11. Recurrence Plots (RPs) for six iidmarket sessions, each running
for 1,500 simulated days of continuous (24hr/day) trading, each simulated
at 60Hz, and each involving multiple transactions per second, i.e. involving
on the order of one billion transactions per 1,500-day session. Simulating
each market session took approximately 280 hours of wall-clock contin-
uous CPU time on a 16GB Apple Mac Mini (M1 Silicon, 2020), with data
frames recorded once per simulated hour, yielding complete RPs that are
36,000×36,000 pixels. For each RP, the numeric labels on both axes shows
the number of days elapsed. The RP at upper-left shows the population of
traders drifting in one region of strategy space over days≈ 100 to≈ 200,
then another region over days≈ 200 to≈ 700, before evolving into a new
region that holds from days≈ 900 to≈ 1300, and then continuing to evolve
along a transient into previously unvisited areas of strategy space: this can
reasonably be described as acyclic evolution. However in all five of the other
sessions, there are clear recurrences, i.e. evidence of cyclic evolution: in the
plot at mid-left, the region of strategy-space visited around days≈ 300 to
≈ 500 is revisted in days≈ 1200 to≈ 1500; in the plot at lower-left, the
region of strategy-space first visited over days≈ 10 to≈ 100 is revisited
sporadically around roughly days 400–600, 700–900, and 1000–1300 as
evidenced by the corresponding thin “trail of dust” in the RP; for the three
plots in the right-hand column, regions of strategy-space first visited in
the opening 100-300 days are returned to after many hundreds of days
spent in other regions: the recurrences have been highlighted with ellipses.
The lower-right plot is notable in that it shows a recurrence after a transit
of more than 1,000 days of co-evolution.
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be expected to affect the dynamics: in the experiments re-
ported here, there was an obvious asymmetry in response,
with the vast majority of the population of sellers rapidly
co-evolving to be super-urgent (as shown in Figure 7) and
the buyers then co-evolving toward multi-modal distri-
butions of mainly relaxed strategies in response; with a
different supply/demand schedule, this asymmetry could
plausibly be reversed. Future papers will explore these and
other issues.

A. Brief Introduction to Recurrence Plots

For the benefit of any readers unfamiliar with the recur-
rence plots (RPs) used in Figures 10 and 11, the diagrams in
Figures 12 and 13 illustrate key aspects of this visualization
technique for characterising high-dimensional dynami-
cal systems: in their simplest incarnation, RPs are square
arrays of cells or pixels, that are binary-shaded (e.g.: the
pixels are either black or white), with a cell at column c and
row r (denoted here by Cc,r) being shaded if the state of the
system at the time associated with row r is a recurrence of
a previously-observed system state that occurred at the
time associated with column c; otherwise unshaded.

Figure 12. Illustrative synthetic recurrence plot (RP) for a dynamical sys-
tem that starts at time t = 0 in state A and then over the next 12 timesteps
transitions through the following sequence of states: B, C, D, A, A, A, B, C,
D, E, F, E. Let Cc,r denote the cell/pixel at column c and row r: the cell is
shaded if the state of the system at time t = r is a recurrence of the state of
the system at time t = c, and is otherwise unshaded. For D-dimensional
dynamical systems where the state of the system at time t is~s(t) ∈ RD,
recurrence is usually defined to occur when the distance |~s(r) –~s(c)| < ε

for some suitably small ε. By convention, the RP origin point is at lower
left, and the diagonal line of cells Cc,r:c=r is referred to as the Line of Identity
(LOI); cells on the LOI are shaded because the distance from any state to
itself is zero. The LOI divides the RP into two right-triangles with mirror-
symmetric patterns of blank and shaded cells. The figure shows two key
features in RPs: the diagonal line of four shaded cells (i.e., C0,6, C1,7, C2,8
and C3,9) starting at time t = 6 when the state sequence A-B-C-D recurs,
having first occurred at times t = 0 to t = 3; and the vertical line of three
shaded cells (i.e., C0,4, C0,5, and C0,6) starting at time t = 4 where the state
A recurs three times, having first occurred at time t = 0.

In systems where the state at any one time is one of a
small number of discrete values, recurrence would usually
be defined as strict equality of states. But in many dynam-

ical systems of practical interest, the system state at time
t is a D–dimensional real-valued vector ~S(t), and for cre-
ating an RP any subsequent state ~S(t + ∆t) that is within a
D–dimensional solid hypersphere (i.e., a D–ball) centered
on ~S(t) with radius ε is considered to be a recurrence of
~S(t). Naturally, the choice of ε is significant: if too large,
each new state is registered as a recurrence of all previous
states; if too small, it is possible that no recurrences are
ever recorded. The RP origin point is normally displayed
at lower left, and the diagonal line of cells Cc,r:c=r , referred
to as the Line of Identity (LOI), is always shaded because
the distance from any state to itself is zero.

Figure 13. Illustrative synthetic recurrence plot (RP) for a D–dimensional
dynamical system with state vector~S(t) ∈ RD that starts at time t = 0 in
state~S(0) = S0 and then over the next three timesteps transitions through
states S1 to S3 with no recurrences. The upper pair of figures, labelled t = 3,
illustrates the set of non-recurring state-vectors on the left, and the corre-
sponding RP on the right. Here the end-point of each state-vector is the
centre of a D–ball (i.e., a solid D–dimensional hypersphere) of diameter ε,
such that if any two balls intersect then the distance between the two vector
end-points must be less than ε, which is thus counted as a recurrence. As
there have been no recurrences by t = 3, the RP plot only shows shaded
cells on the LOI. The lower pair of figures, labelled t = 5, illustrates the
situation after the system has transitioned through state S4 to state S5: the
ball for S4 intersected with the balls for each of states S0 to S3, so the single
state S4 is recorded as a recurrence of each of the states S0 to S3, giving
rise to a horizontal line of recurrences on the RP at cells C0,4–C3,4; then S5
intersects only with S3, shown on the RP as a single shaded cell at C3,5.

Once an N × N RP is created, summary statistics can
be calculated by doing simple image-processing such as
computing the frequency distribution of lengths of vertical
and diagonal lines in the RP, and then calculating summary
statistics from those distributions: this approach is known
as Recurrence Quantification Analysis (RQA). For example,
the trapping time statistic (conventionally denoted by TT),
given P(v) the frequency distribution of vertical lines of
length v in the RP, measures the RP’s average length of
vertical lines at least as long as vmin (usually vmin = 2):
TT =

(∑N
v=vmin

vP(v)
)

/
(∑N

v=vmin
P(v)

)
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So for example if an RP has a TT of 6, and the time
delta between successive rows/columns on the RP is one
hour, then the trapping time is six hours, indicating that
on average the system remains within ε of any particular
state for six hours.

For further details of RPs and RQA, see e.g. Eckmann
et al. (1987); Marwan et al. (2007); Webber and Marwan
(2015).

B. Bristol Stock Exchange: System Architecture

Figure 14 shows a schematic illustration of the overall ar-
chitecture of the Bristol Stock Exchange (BSE) simulation
of a contemporary fully electronic financial exchange, as
was used in the experiments reported here.

Figure 14. Schematic architecture of the BSE financial-market simulator:
see text for further explanation.

BSE simulates a market, composed of an exchange and
some number N of traders which each interact with the ex-
change. Any one simulation of a market session proceeds
according to BSE’s system clock, which provides a unified
time signal to all elements of the simulation. Separate
from the simulation of the market is BSE’s session control
logic, which determines the (potentially time-dependent)
market’s supply and demand schedule: this is used to is-
sue assignments to the traders, i.e. allocations of cash and
limit-prices to buyers, and allocations of stock and limit-
prices to sellers – this is the simulation’s correlate of real-
world market customer orders coming from customers to
sales-traders who are responsible for working each cus-
tomer order. The session-control logic is also responsible
for recording whole-market data, such as the profits and
strategy-values of each trader in the market, as were vi-

sualised in the graphs and plots earlier in this paper.
The exchange receives orders from the traders: bids

from buyers; asks from sellers. When each order arrives
at the exchange, it is processed by the matching engine,
attempting to find one or more matching bids for a newly-
arrived ask, or one or more matching asks for a newly-
arrived bid. It does this by comparing the new order to
those earlier orders, as yet unfulfilled, that are “resting”
at the exchange and which are summarised in aggregated
and anonymized form on the exchange’s limit order book
(LOB). If a new order can be matched with one or more
existing orders on the LOB then the matching orders are
removed from the LOB, and the new order plus its coun-
terparty orders from the LOB are recorded as fulfilled, re-
sulting in a transaction taking place. When a transaction
occurs, its details are written to the exchange’s public
record of transactions which is commonly referred to as
the exchange’s tape – the tape records transactions and
also other notable market events, such as cancellations of
existing orders. When a transaction occurs, the exchange
also notifies the traders concerned, adjusting their cash
balances appropriately. The BSE exchange also can be con-
figured to write the state of the LOB at any one instance
(referred to as a LOB frame) to an external record, the LOB
framestore, for subsequent analysis.

Each of the N traders in the market receives occasional
fresh assignments from the session control, all have the
same view of the LOB data published by the exchange, and
when a trader is involved in a transaction it receives noti-
fication of the relevant details from the exchange’s match-
ing engine. Each trader is able to send orders to the ex-
change, and to send cancellations of existing orders, and
each maintains its own local private record of assignments
received, orders sent to the exchange, and transaction de-
tails received from the exchange: this is conventionally
referred to as the trader’s blotter.

For further details of BSE, see Cliff (2012, 2018).
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