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Abstract 
In this paper, an algorithm for detecting position for model trains is presented. It uses a single affordable video camera, a software 
which utilizes computer vision algorithms to track objects and a simple server to share that data with model embedded devices. 
This approach has proven that it provides accurate enough (several centimeter precision) positional data to control the models 
during testing. The system is easy to setup and allows to migrate the software code to use GPS without significant changes. 

Keywords: autonomous vehicles, speed estimation, computer vision, safety system, satellite positioning simulation, 
autonomous vehicle modelling 
 
 

1. Introduction 

The numbers of types of transport units, passenger 
counts, and amount of transported cargo worldwide is 
growing every year, that is why the control and 
management of traffic flow is also becoming more and 
more important [1], [2].  It is not at all surprising to see 
a global positioning device installed in majority of 
commercial vehicles, which are used to address the 
control problem. Needless to describe the importance 
of such devices, but research and development of 
systems whose functionality uses global positioning 
data poses a challenge (among many others) – there is 
no GPS signal indoors for testing and its precision is not 
sufficient for small model appliances. In this paper an 
indoor positioning system is described, that can help 
tackle the mentioned problem and add another solution 
to the pool of already developed ways of setting up an 
indoor positioning system for testing small scale 
transport models that require GPS like coordinates. 

There is undoubtedly a need for such systems, since 
the railroad infrastructure will increase significantly 
which in its turn will require more and more research 

and development of systems that use GPS and thus 
more and more demand to the variety of tools available 
to perform such tests. According to European 
Commission (EC) Sustainable and Smart Mobility 
Strategy [3] which indicates that, by 2030 high-speed 
rail traffic will double across Europe, but by 2050 rail 
freight traffic will double and a fully operational, 
multimodal Trans-European Transport Network 
(TEN-T) for sustainable and smart transport with 
high-speed connectivity will be developed. But in 
Europe’s Rail Joint Undertaking Master plan [4] EC 
market, that the railway sector to undergo a significant 
transformation - increasing its capacity for passenger 
and goods transport, enabling an increase in the use of 
rail transport, and reducing further the greenhouse gas 
emissions of the railway sector itself. 

Such global strategies, pose new challenges for 
raising the level of automation and safety of rail 
transport management systems to increase the level of 
automation and security. At present, both the existing 
railway transport management systems are actively 
developing  (ERTMS [5] in Europe, PTC [6] in USA and 
for example CTCS [7] in China, although research is 
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being carried out into the development of new 
automatic control methods and technical solutions 
using, advanced technologies such as various types of 
automatic unmanned transport [8], [9], [10] and [11], 
computer vision [12], artificial intelligence [13], [14], 
IoT technologies [15] etc., which, in general, makes it 
possible both to reduce the impact of human factor on 
the level of safety of railway transport control systems 
and to increase its performance, accuracy, efficiency 
and other important parameters. 

When solving a problem for some transport system 
(and railway systems), testing is inevitable and while 
numerical modelling methods provide an excellent test 
bed, testing by using models is still unavoidable to 
bring the developed system closer to the “real world” 
without spending too many resources for full-scale 
experiments. Modelling allows to expose the fragile 
parts of the developed system when it is moved from 
perfect mathematical simulation environment. Given 
the reliance of many transport systems on some 
positional service that can track the position of each 
agent and feed its coordinates to some service that 
generates a control signal 

In this paper authors provide setup and algorithm of 
a simple and affordable system, capable of tracking 
models and detecting their coordinates. The system can 
track object locations with centimeter accuracy. 

2. State of the art 

There are quite a few indoor positioning systems 
developed each of which has its pros and cons. 

Bluetooth based systems such as [16], [20] and [21] 
can be a valid choice, as they are well available, but they 
lack precision needed, which is around 50cm. Wi-Fi 
based systems are even less accurate. 

A good way of detecting the position would be to use 
some sort of an onboard device, which tracks markers, 
say on a ceiling, and returns own position, like [17]. But 
in this case image processing load must be carried out 
by a relatively slow embedded device, in experiments 
performed by the authors, the track width of the model 
train is 5cm which limits the size of the board and 
sensors and the amount of computational power 
available on board of the model. In [18] 8 infrared 
cameras are used, which can provide great precision, 
but that comes at a considerable cost. 

Acoustic system as described in [19] does provide 
good precision of under 5cm and is not very costly to set 
up. Its drawback is lack of mature software and 
accessible components. 

In an attempt to fill the gap, this paper describes a 
method to set up a small-scale positioning system, 
which allows to work around the shortcomings of other 
solutions thus being a more suitable solution for 
setting up a test bed with indoor positioning system for 
transport solutions. 

3. Mathematical model 

The object is detected by using a colorful marker 
attached at the top of the model vehicle. This is a 
simple pixel difference task, which any computer 
vision software can perform. The result of it is a 
mask, where white pixels represent the marker, and 
the rest of the image is black. After the marker has 
been detected and its screen coordinates received, 
those must be recalculated to get the real-world 
coordinates as well as adjust for detected object 
height. However, for some cases raw pixel 
coordinates are useful as well since pixel grid is a 
coordinate system by itself. 

As thoroughly described in [22] the calculations need 
a measured point in the center of the image as a base. 
The calculations itself start from achieving the 
distance to the calibrated center point located on the 
image plane: 

𝐶𝑂 =
0.5 ∗ 𝑤𝑝𝑥

tan (
∠𝐾𝐶𝐿

2
)

, (1) 

Where: 

 𝑤𝑝𝑥 – is image width (pixels) 

 ∠𝐾𝐶𝐿 – camera’s the field of view (horizontal)  

The distance to the center point from the camera 
mounting post: 

𝐻𝑋 =
ℎ

tan(𝛼)
(2) 

where: H is the ground position of the camera mount, 
h is the height of the camera above ground, α is the 
angle between the camera axis and ground plane. 

The distance from the camera to the calibrated point 
(center point) on the ground: 

𝐶𝑋 = √ℎ2 + 𝐻𝑋 (3) 

The vertical component ∆ of the angle between the 
line from viewpoint to CX and the line, connecting 
the viewpoint and the point of interest on the ground, 
where 𝑑𝑣  is the vertical component of the vehicle: 

∆= atan (
𝑑𝑣

𝐶𝑂
) (4) 

𝛽 is the angle of the line that connects point of view 
to the point of interest and the ground: 

𝛽 = {
180° − 𝛼 − ∆, 𝑑𝑣 > 0

180° + (180° − 𝛼) + ∆, 𝑑𝑣 ≤ 0
(5) 

After that we can calculate the X and Y components 
the distance from the center point to the vehicle (6) 
and (7): 

𝐷𝑣 = D ∗
sin(∠∆)

sin(∠𝛽)
(6) 

𝐷ℎ = 𝐷 ∗ sin(∠𝑂𝐶𝑍ℎ) (7) 
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Once the components of current location of the 
vehicle are known at a current frame, then the 
process needs to be repeated for the second frame 
and the distance travelled by the vehicle would be: 

𝑆 = √(𝐷ℎ
𝑖 − 𝐷ℎ

𝑖−1)
2

+ (𝐷𝑣
𝑖 − 𝐷𝑣

𝑖−1)
2

(8) 

 

4. Developed Simulation and Control Algorithms 

The camera was positioned on a tripod and targeted 
at the area of interest. Each of the tracked model 
vehicles should have a color marker and an on-board 
computing device, capable of controlling its motors, an 
MCU board with network module is sufficient. 

Alternatively, the camera can be positioned directly 
above the testing area. This way it is easy to use the 
pixel coordinates directly without any calculation since 
the distortions are negligible for the selected scale.  

Figure 1. Scheme of the test system 

When launched, the server starts the video 
recognition process, receiving video stream from a 
connected camera and tracks color markers on the 
model vehicles, recording their positions. Train 
controllers periodically create a http request and get 
their coordinates. These coordinates can be used in any 
way necessary: either processing them on board or 
creating a request to some other controlling software. 
In the example described in the experiment section, the 
embedded software creates another http request to 
another server that acts as a station controller. 

The station controller accumulates all the 
coordinates from all the trains and constantly updates 
their state. On each request the server processes the 
acquired data and decides what to do with the model 
vehicle which issued the request: whether it should 
brake, change its course, or slow down for instance. 

The object tracking uses computer vision at its core. 
Each input frame color of the video is converted to HSV 
format.  

 Then, a mask for a marker color is created. A contour 
is drawn, and a center point of the tracked contour is 
used as an on-screen coordinate. Software is 
configured to draw a minimum area contour, this way 

the framework rotates the bounding rectangle, and the 
detected center point of the marker is as close as 
possible to the actual center point of the marker. 
Alternatively, a circular marker can be used. 

The coordinate update and request processes are not 
synchronized in any way, so the request for coordinates 
returns whatever there is at that moment. The response 
time observed is short enough, around 50ms which is 
enough to not get too much lag unless the models are 
fast. For example: in the tested case it took 7 seconds 
for a model to complete the entire circle at top speed 
and the whole system was able to keep up. 

Pixel coordinates in some cases can be used directly 
or they can be sent into the calculation function to get 
the real-world X and Y distance components counted 
from the point which was selected as a center. Knowing 
the two coordinates, the height of the detected marker 
above the base plane, and the angle β it is possible to 
correct the calculated coordinate and get its projection 
on the base plane. 

Let’s consider the drawing at Figure 2. The distance 
calculator function returns the coordinates of the point 
Y1 that the camera tracks. Unless the tracked point is at 
the ground level, there will be a position error. The real 
position will be at point Xc. Two projections of the 
shown drawing: Figure 3 and Figure 4 need to be 
considered, one for each component of the corrected 
coordinate. 

The two values 𝑌𝑣𝑋𝑐 and 𝐵𝑋𝑐 are the searched 
coordinates of the projection of the tracked point onto 
the ground plane, where the calibrated center point is. 

  
Figure 2. 3D illustration for coordinate correction. 

 

𝑌𝑀 =  
𝑌𝑣𝑁

cos 𝛽
(1) 

𝑀𝑁 =  √𝑌𝑀2 − 𝑌𝑣𝑁2 (2) 
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𝑌𝐸 =  
𝑑𝑣 ∗ ℎ

𝑀𝑁
(3) 

𝑌𝑣𝑋𝑐 = 𝑑𝑣 − 𝑌𝐸 (4) 

𝐵𝑋𝑐 = 𝑑ℎ −
𝑑ℎ ∗ ℎ

𝐶𝐵
(5) 

 
Figure 3. Projection for correcting the dv component. 

 
Figure 4. Projection for correcting the dv component. 

5. Simulation and experiments 

To set up the system the materials were used as 
mentioned in Table 1. 

Table 1. Hardware.  

Item Quantity Notes 

HD web 
camera 

1 60FPS capable. HD 
resolution. 90° FOV. 

PC 
 

1 
 
 

System of AMD Ryzen 
7 level used, but AMD 
Ryzen 5 or Intel i5 
would be sufficient. 
 

ESP32 For each 
model 

 

The distance detection method was tested by setting 
up the camera and measuring coordinates to known 
points. 

 

 

Figure 6. Model trains during the test. Notebook, acting as a server is 
visible next to the monitor, not the color markers on train roofs. The 
size of the table is 1m by 1,60m 

Overall, 103 measurements were done which yielded 
the average difference between the calculated and 
actual point was under 1cm as seen on Figure 7 and 
Figure 8. The size of the trapezoid enclosing the test 
area is 560mm (width top), 360mm (width bottom) 
and 360mm height. Figure 9 shows the error value 
separately. 

 
Figure 7. X axis measurements actual vs expected. 

The model trains are controlled by an ESP32 board. 
Each board polls the specified IP address once in 
250ms, same for the switches. The positioning server 
tracks the train color markers re-calculates pixel 
coordinates to real coordinates and returns them when 
requested. The train, after receiving the coordinates 
requests the speed command from the control server. 
The control server processes all the coordinates 
received from the trains and generates a speed value to 
be sent back to each of them and the trains change their 
speed accordingly or stop. 
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Figure 8. Y axis measurements actual vs expected. 

 
Figure 9. Coordinate error value X(blue) and Y(Orange). 

6. Results and Discussion 

The developed system has proven to be a simple, 
cheap, and suitable way of mocking the positional data. 
Overall cost of the system, excluding the model trains, 
is approximately $200 and importantly, does not use 
components that are difficult to obtain, but rather 
widely available ones. Same is applicable to software. 
There is a wide variety of free HTTP server solutions 
available, that allow to set up one on virtually any 
computing device, be it a laptop or a Raspberry board. 

It took the authors two days to set up a positioning 
server from scratch and several hours to set up control 
server. After that it became possible to work with the 
most complex part – the control logic, which is beyond 
the scope of this paper. 

The railroad model used, could be operated by using 
the positional data provided by the system and allowed 
to test variants of setting up the control. The locations 
of model trains were detected with accuracy sufficient 

to pinpoint their position, process the state of the 
railway and generate a valid control command. 

The system is easy to setup, uses basic components, 
which are accessible thus allowing to quickly set up a 
test bed to model the required case. In some cases, raw 
pixel coordinates can be used, but, if necessary, they 
can be re-calculated to a different coordinate system 
which will provide more flexibility for processing. 

7. Conclusions 

If a bigger area, that exceeds the field of view of the 
camera needs to be covered, then using cameras can 
become challenging, however there seems to be a way 
to use 2 or more cameras to cover larger area, this is 
something to consider for the future research. Also, the 
proposed method is impractical for cases when 3D 
positioning is needed. 

Some errors are introduced when calculations are 
performed to convert pixel coordinates into real 
coordinates, but as mentioned the overall error stays 
below 1cm. There is room for improvement in this area 
which could be addressed by researching methods 
about how to better set up the camera to minimize 
measurement errors and to search for a better 
mathematical model to account for distortions, as well 
as to check the number of errors introduced by the 
computer vision part and the calculations part. Overall, 
a single camera is enough to track position of model 
vehicles on a 2D plane and is useful to perform various 
tests indoors with scale models. 
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