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Abstract 
Cranes are the need of every construction site as the construction paradigm is shifting from traditional (on-site) methods 
toward an off-site (modularization) approach. The communication between the crane operator and the crane signalman plays a 
significant role to complete the construction project safely and efficiently. The communication between crane operator and 
signalman relies on hand signals and two-way radio communication systems. However, these means of communication are not 
reliable in modern construction as the construction sites are more congested and noisy. Any miscommunication may lead to a 
disastrous accident on the construction site. The recent advancement in information technology can assist to add more layers of 
communication in the crane Industry. This paper presents a framework that uses deep convolutional neural network (DCNN) 
architecture for static hand signal classification using the crane signalman hand signals dataset. The DCNN model was 
developed to classify 18 different crane signalman hand signals. The model was trained, validated, and tested using a dataset of 
8133 images, and achieved average accuracies of 89.1% and 84.6% for the training dataset and the validation dataset, 
respectively. The precision, recall, and F1 score in the test dataset were recorded as 81.5%, 81.8%, and 81.7%, respectively. The 
model is further validated with real-time hand signals classification and an accuracy of 87.9% is achieved. This developed 
framework can be used as another layer of communication with the current state of practice to reduce the communication error 
between crane signalman and operator. 
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1. Introduction 

The communication between the crane operator and 
the signalman relies on hand signals and two-way 
radio communication systems. The crane industry has 
been using universal hand signals for decades to give 

direction to the crane operator for safe crane 
operation (Everett and Slocum 1993). Hand signals are 
the fastest and most reliable way to communicate a 
message when the crane operator has a direct line of 
sight with the signalman and the operator then 
operates the crane based on the direction given by the 
signalman. However, when the signalman is far away 
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from the crane operator, the crane operator will not be 
able to clearly distinguish the signalman’s hand 
signals; while at other times the crane operator’s line 
of sight will be obstructed due to construction site 
congestion. These limitations make this method 
ineffective and unsafe (Everett and Slocum 1993; 
Shapira et al. 2008). To overcome the limitations, the 
crane industry has used two signalmen at the same 
time such that the second signalman copies the main 
signalman’s signals and transmits these to the 
operator; however, this process is less productive and 
cannot be 100%  reliable due to the potential for the 
signalman to misinterpret the signals or 
miscommunicate them to the crane operator, which 
may lead to a disastrous accident(Fang and Cho 2016). 
Another means of communication in the crane 
industry is the use of a two-way radio communication 
system. Typically, this two-way radio communication 
system is used on the site when the crane operator’s 
direct line of sight/vision is blocked by an obstacle or 
when the signalman is far away from the operator and 
he cannot see the signalman clearly; however, a two-
way radio communication system needs to be 
maintained on a dedicated channel that is available at 
all times (Zekavat et al. 2014). This system can be 
viewed as an alternative to the hand signaling system 
under certain circumstances and, potentially, as an 
extra layer of safety. A two-way radio communication 
system cannot be 100% reliable when the construction 
site is noisy, such as when there is drilling on-site and 
the operator cannot hear the signalman clearly 
(Zavichi and Behzadan 2011; Mansoor et al. 2020). 
Secondly, while communicating using two-way 
radios, one hand needs to be used to push the talk 
button to send the voice message while the other hand 
must be used for signaling, which may cause a 
miscommunication error and can be dangerous 
(Zekavat et al. 2014). Another drawback of the two-
way radio system is when a problem occurs with the 
dedicated channel being used by the operator and 
signalman because the whole crane operation is halted 
until the problem is resolved, which causes delays, 
productivity losses, and safety risks (Zavichi and 
Behzadan 2011). 

To overcome the aforementioned limitations, 
information technology can provide another layer of 
safety by making the communication between 
signalman and crane operator more efficient and more 
accurate by using deep convolutional neural network 
(DCNN). The objectives of the framework are to 
develop a DCNN model, to train the model with an 
image dataset of crane signalman hand signals, to 
achieve a high level of accuracy in classifying images 
of crane signalman hand signals in training, 
validation, and test datasets, and to further validate 
the model for real-time crane signalman hand signals 
classification. The proposed framework is capable of 
classifying the crane signalman hand signals in real-
time. The benefit of using this framework is that it 
assists communication between the crane operator 
and the signalman. 

The present study is organized as follows: Section 2 
Introduces related work in context of improving the 
communication between crane operator and 
signalman. Section 3 describes the methodology and 
architecture of the proposed deep convolutional 
neural network model. Section 4 and 5 presents the 
model optimization techniques and data preparations. 
Section 6 evaluates the Implementation and model 
performance and describe the model real-time 

classification results of the proposed model. Section 7 
contain the conclusion, limitations of the present 
study and related future work. 

2. Related work 

To improve safety and communication in the context 
of crane operation, researchers have done a significant 
amount of work. Camera-based vision systems have 
been developed that enable the operator to monitor 
the construction site while operating the crane. 
Researchers have also developed sensors to detect 
hazards and dangerous situations on the construction 
site. These technologies are quite beneficial in terms 
of improving safety and communication on 
construction sites, but due to the limitations of these 
technologies, they are not yet widely employed in the 
crane industry. These technologies are discussed 
below in detail. 

2.1. Camera-based systems 

In crane industry, in particular, can benefit from 
improved communication and safety systems; 
therefore, researchers have developed camera-based 
systems as shown in Figure 1. (Shapira et al. 2008)  
developed a video monitoring system that not only 
improves safety in the construction site but also 
increases productivity by 11 to 26%. The noted results 
were based on 2400 time complete delivery of payload 
from picking to dropping the load to their allotted 
locations. The system consists of a video camera 
mounted to the top of the tower crane to show a live 
video feed of the site that focuses on the signalman 
(Shapira et al. 2008). A monitor in the crane cabin 
allows the operator to see the live video of the 
signalman as well as the site. According to (Rosenfeld 
1995), video cameras attached to the cranes can be 

Figure 1. Camera-based vision system for tower and mobile 
cranes 
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useful both in terms of efficiency and safety 
improvements as the live site vision enables the 
operator to make judgments on-site without any 
hesitation. 

The drawback of this technology is that the camera 
shows only 2-dimensional images without any 
perception of depth. The operator has difficulty 
accurately determining the distance of the load to the 
ground, which can lead to serious accidents on the 
site(Shapira et al. 2008). CRANIUM is another camera-
based technology, developed by Everett (Everett and 
Slocum 1993), that has been found to improve both 
safety and cost-effectiveness because it eliminates the 
need for the second signalman (who is responsible for 
copying the hand signals of the first signalman at the 
lifting point and communicating these to the crane 
operator) (Everett and Slocum 1993). In this system, a 
camera is fixed to the top of the boom and a monitor is 
placed in the operator's cabin. From the monitor, the 
crane operator can see the loading area as well as the 
signalman (Everett and Slocum 1993). Stoneridge-
Orlaco and HoistCam are camera and monitor 
manufacturers providing camera-based solutions for 
live video feed for tower, telescopic and crawler cranes 
to improve the communication, safety, and efficiency 
of crane operation on construction sites. The 
disadvantage of these camera-based systems is that 
sometimes while the crane is in operation, a part of 
the crane, such as a hook or sling, moves in front of 
the camera which obstructs the operator’s view and 
the operator is unable to see the signalman or the 
target area. This drawback can slow down the 
operation and increase the safety risks for the workers 
on the site (Everett and Slocum 1993). 

2.2. Sensor-based systems 

Another means to accomplish improved safety and 
communication in the crane industry is the 
application of sensor-based systems. (Li et al. 2013) 
introduced RFIDs to track construction workers on-
site with the help of a GPS tracking system. This 
system is used to limit the movement of the workers 
because only authorized workers were allowed in the 
danger zone during any crane lift operation. By 
automatically detecting unauthorized workers, the 
system sends an alert to warn authorized management 
personnel. This system was approved by the 
management and staff on the site (Li et al. 2013). 
(Fang and Cho 2016) developed a sensor-based 
framework that was capable of providing real-time 
safety assistance for mobile crane lift operations on a 
construction site. The sensors were attached to a 70-
ton telescopic crane and were responsible for 
detecting nearby objects and warning the crane 
operator of any dangers. This framework was 
implemented on the site and the responses from the 
working crew were recorded. Most of the crew was 
satisfied with the developed framework and responded 
that the framework can be helpful during blind lifts by 
responding early before the crane comes into contact 

with any object (Fang and Cho 2016). To improve the 
two-way radio communication system between crane 
operator and signalman, (Zekavat et al. 2014) 
developed a camera-based vision system with a 
wireless microphone to monitor the blind lifts. In this 
system, a laptop was placed above the eye level of the 
operator in the crane operator cabin, where the 
operator have to look up the laptop to make decision 
while moving the load. This system improved the 
communication and visibility of the site during crane 
operation (Zekavat et al. 2014). On the other hand, the 
limitations of sensor-based technologies are the 
accuracy of the system, and the measurement error 
and setup error of the system makes these systems 
less trustworthy because a small margin of error can 
cause serious accidents on the construction site 
(Everett and Slocum 1993). With respect to 
implementing RFIDs for the purpose of worker 
tracking, the workers responded that they have 
privacy concerns, in particular, that their productivity 
will be judged based on their movements; this system 
was noted to have accuracy issues as well (Li et al. 
2013). 

3. Methodology and CNN architecture 

In recent years, rapid improvements in computation 
power have led to the development of deep learning 
algorithms for image classification, notably, 
convolution neural networks (CNNs). A convolution 
neural network extracts the features from the input 
image pixels and classifies the images with high 
accuracy and generalization capabilities. In the civil 
engineering domain, convolution neural networks 
have been used for the classification and detection of 
equipment on construction sites, and construction 
workers wearing hardhat (Arabi et al. 2019; Gu et al. 
2019; Hu et al. 2019; Wang et al. 2020; Wu et al. 2019), 
of defects in sewer pipes (Yin et al. 2020), and of 

defects in concrete surfaces (Cha et al. 2017), for 
example.  

In the present study, a deep convolution neural 
network approach is developed to classify crane 
signalman static hand signals in real-time. The 
developed DCNN is trained, validated, and tested using 
a dataset of 8133 augmented and non-augmented 
images that are collected by individuals from the 
research team. An overview of the developed deep 
learning-based framework is given in Figure 2. The 
crane signalman hand signals dataset containing all 18 
hand signals necessary for crane operation serves as 
the original data source for the signalman hand 
signals. The crane signalman hand signals are based 

Figure 2. Overview of the deep learning based framework 
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on the occupational health and safety (OHS) crane 
hand signals (Occupational Safety and Health 
Administration., 2009), as shown in Figure 3.  

In order to improve communication, the crane 
signalman hand signals must be classified in real-
time. To accomplish this, a deep learning approach is 
developed and is consists of two main parts. First data 
is collected and pre-processed and the second is the 
development of the deep convolutional neural network 
model that is discussed in detail in section 3.1 and 3.2 

3.1. Data collection and pre-processing 

Since there is no accessible dataset available for crane 
signalman hand signals, the dataset needed for this 
work is collected by taking 6507 images of individuals 
from the research team doing all 18 crane signalman 
hand signals in all possible angles (0°to 360°), and 
positions (right, left, front and back sides of 
signalman). The camera is set up at multiple distances 
(5meter to 20meter) to record the image dataset in 
different environments (sunny and cloudy). While 
creating the dataset, data balancing is taken into 
account, which means the portion of images in the 
dataset showing each one of the 18 hand signals 
should be 5.5% of the whole dataset. However, in the 
collected dataset, 7.51% of images depict the 
emergency stop hand signal, which is the maximum 
portion, and the minimum portion of images, 3.64%, 
depict the travel hand signal as shown in Table 1. 
Therefore, the amount of data provided to train the 
model is sufficient for the model to learn the features 
from all hand signals in the dataset. The number of 
samples collected for each hand signal can be seen in 
Table 1. 

All images have a resolution of 1280×720 pixels. The 
deep convolution neural network can be trained using 
images of any resolution; however, a higher resolution 
means more features will be extracted from images, 
which increases the computational complexity and the 
processing time. To reduce the processing time and 
computational load, all images are scaled down to a 
280×280 pixel resolution for further processing. 

Table 1. Image samples collected for each hand signal 

Standard Hand signals Number of 
sample images 

Percentage 
(%) 

Hoist 486 7.47 
Lower 411 6.32 
Use main hoist 231 3.55 
Use whipline 333 5.12 
Boom up 477 7.33 
Boom down 453 6.96 
Move slowly 417 6.41 
Swing 243 3.73 
Boom down and raise the 
load 

393 6.04 

Boom up and lower the load 459 7.05 
Stop 423 6.50 
Emergency stop 489 7.51 
Travel 237 3.64 

Dog everything 285 4.38 
Travel both tracks 246 3.78 
Travel one track 288 4.43 
Telescope out 333 5.12 
Telescope in 303 4.66 

 
Figure 3. Crane signalman hand signals (Occupational Safety and 
Health Administration., 2009). 

3.1.1. Data augmentation 

Data augmentation is mandatory to better generalize 
the dataset, and it will help to increase the number of 
images in the dataset, which decreases the chances of 
model overfitting. There are several techniques that 
can be used to increase the size of a dataset and 
generalize the dataset, such as the cropping, rotating 
or flipping of the images. In the present work, the 
intensity transformation technique is used, which is 
an adjustment of the contrast and brightness of the 
images to generalize the image dataset for different 
scenarios like low and high light conditions. The data 
augmentation Increased the size of dataset by 25%. 

3.2. Convolutional neural network-based deep 
learning model 

3.2.1. The architecture of the developed deep 
convolutional neural network  

Convolution neural networks are constructed by 
artificial neurons (i-e. mathematical functions that 
receive one or many inputs and sum them to produce 
an output) with weight, biases, and activation 
functions, which are responsible for transforming 
input images into a single output value. According to 
(LeCun and Bengio, 1995) Convolution neural 
networks use spatial decomposition of input images in 
multiple stages. Spatial decomposition is achieved 
through convolution and pooling layers. A DCNN is 
composed of four main features: convolution layer 
that is responsible to transform images through 
various filters to extract the features from the input, 
activation that adds non-linearity to the output 

Figure 4. Architecture of developed deep convolution neural 
network 
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neurons, pooling or sub-sampling responsible for 
reducing dimensions of the feature map, and 
classification responsible for transferring output into 
a classification score. 
 
 
The DCNN model developed for the proposed approach 
consists of convolution layers, pooling layers, dense 
layers, and an output layer. The input image in the 
DCNN has three color channels, red, green and blue 
(RGB), and it can be viewed as three 2-dimensional 
matrices arranged over each other having a pixel value 
in the range of 0 to 255 and is passed through 
convolution, pooling and dense layers to achieve an 
output vector. The architecture of the DCNN is shown 
in Figure 4. 

The weights in the network are adjusted and 
optimized through the process of backpropagation. 
The process of backpropagation is achieved through 
epochs/ iterations such that the convolution neural 
network can correctly classify all images in the 
dataset. The architecture of the developed DCNN 
model consists of layers that are discussed in the 
following sections. 

3.2.2. Convolutional layers 

Convolution layers are considered the building blocks 
of convolution neural networks. The convolution 
operation is responsible for extracting features from 
the input image. The input image is convolved into a 
number of kernels. Kernels are the matrices used to 
store the weights of convolution operations. 

 Developed DCNN model architecture has three 
convolution layers. In the first convolution layer, the 
images are of size 280×280×3 (width, height, color 
channels) and each input image is convolved into 16 
different kernels. Each kernel has a size of 3×3×3 
(width, height, color channels). After the first 
convolution, each output has a size of 280×280 and 16 
channels, so the resulting output will become 
280×280×16. The resulting output is passed through 
the activation function and then subsampled to size 
140×140×16 using max-pooling layers. 

Second convolution layer takes the output of the 
max-pooling layer of size 140×140×16, which is 
further convolved with 32 different kernels, each 
kernel with a size of 3×3×16. This will result in 32 
output channels of size 140×140. The resulting output 
is passed through the activation function and then 
subsampled to size 70×70×32 using max-pooling 
layers.  

Third and final convolution layer takes the output 
of max-pooling after the second convolution layer of 
size 70×70×32 and is then convolved with 64 different 
kernels, each kernel with the size of 3×3×32. This will 
result in 64 output channels of size 70×70. After 
adding biases to 64 channels, the resulting output is 
passed through the activation function and then 

subsampled to size 35×35×64 using max-pooling 
layers. 

The variation in the number of kernels is used in the 
architecture to obtain the highest accuracy in the 
model. Finally, a deep convolution neural network 
architecture with 16, 32, and 64 kernels in the first, 
second, and third convolution layers, respectively, 
produced the highest accuracy on the validation data 
set. 

The developed network used a stride value of 2 that 
helps the kernel to move two matrix pixels at a time. 
This parameter affects the dimensions of output and 
reduces the chances of model overfitting. In the 
model, padding is used to assist the kernel to move 
uniformly over the matrix and its edges to obtain all 
the desired information in the image. 

3.2.3. Activation function 

Activation function is used in the convolution neural 
network to add non-linearity to the output neurons. 
Adding an activation function is essential, otherwise, 
the DCNN would compute linear combinations of 
linear functions and the model would not be able to 
learn complicated or non-linear functions (Nair and 
Hinton., 2010). 

Activation function used in the developed DCNN is 
rectified linear unit (ReLU) and softmax. The ReLU 
activation function is an identity line where y=x for all 
positive lines and 0 for all negative values (Nair and 
Hinton, 2010). The mathematical equation for ReLU is 
given in equation 1. 

 
 (1) 

For the activation of the output layer, the softmax 
activation function is used. The softmax function is 
generally used for multiclass classification. It 
squashes the output of each unit to be between 0 and 1 
and returns the probabilities of the input being in a 
particular class. Mathematically, it can be written as 
shown in equation 2. 
 

 

(2) 

Where yi = correct label of image xi, and fyi = 
predicted score. 

3.2.4. Max-pooling layer 

Convolution layer along with the activation function is 
followed by the pooling or subsampling layer. The 
purpose of adding the pooling layer is to reduce the 
dimensions of the feature map and retain the 
important information (LeCun and Bengio, 1995). This 
layer also reduces computation and helps in reducing 
the overfitting of the model. In max-pooling, a kernel 
of size n × n is moved across the matrix and for each 
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position; the maximum value is taken. 

In the developed DCNN, each convolution layer is 
followed by a max-pooling layer to reduce the 
dimension by a factor of 2. In the first convolution 
layer, max-pooling reduces the output channel from 
280×280 to 140×140. In the second convolution layer, 
it further reduces the output channel from 140×140 to 
70×70, and at the final convolution layer, the output 
channel is reduced from 70×70 to 35×35. 

3.2.5. Dense/fully connected layers 
Output of max-pooling layers is the input to the dense 
layer. In the dense layer, all input and output are 
connected to all the neurons in each layer, while 
neurons within a single layer share no connection. In a 
convolution neural network, dense layers are used to 
create the final non-linear combination of features 
and to predict the output layer. In the present study, 
three dense layers with 1,024 neurons in each layer are 
used. These layers are selected based on the 
classification performance of the validation set. A 
different number of dense layers is used and the 
accuracy of each is recorded. While recording the 
accuracy, it was noted that three dense layers with 
1,024 neurons in each layer increase the average 
classification accuracy by 3%. 

3.2.6. Output layer 

Final layer of convolution neural network architecture 
is the output layer, which is responsible for 
transferring the output into a classification score. The 
softmax function is used for the activation of the 
output layer. The softmax function takes as input the 
predicted class labels and outputs a probability score. 
The equation for the softmax function is given in 
equation 2. The probability scores of output must have 
a sum of 1. The probability score indicates class 
prediction. The largest probability score for any hand 
signal is considered to belong to the correct class. 

4. Model optimization 

When the model achieves higher accuracy in the 
training dataset than the validation dataset, the model 
is considered to be overfitted. To prevent overfitting in 
the model, data augmentation is performed for the 
dataset (Chatfield et al. 2014), which includes 
brightness change, contrast change, image resizing, 
and image rescaling of images. Another method used 
to mitigate the overfitting in the model is dropout 
regularization. The dropout technique was proposed 
by (Srivastava et al., 2014). This technique activates 
the neurons with a certain probability and is 
implemented during the training stage. As the 
network is trained, neurons get randomly deactivated 
with respect to their weights and it will lead to better 
generalization of predictive capabilities (Srivastava et 
al., 2014). In the developed DCNN, a drop rate of 0.2 is 
chosen. A drop rate of 0.2 is selected based on multiple 
trails on the model, which gives higher accuracy 

during the validation and testing of the dataset. 

5. Preparation of training, validation and test 
datasets 

The dataset contains 8133 augmented and non-
augmented images with 18 different crane signalman 
hand signals. The images were collected with 
individuals from the research team. The dataset was 
randomly split into three different datasets: a training 
set, a validation set, and a test set. The training set 
includes 70% of the images, while the validation and 
test sets each include 15%. The reason for choosing a 
larger sample size for the training set is to get more 
features from the training dataset, which leads to 
better accuracy in the validation and test datasets. 

6. Model performance evaluation 

The DCNN model is developed using Python with 
Keras and TensorFlow API, which is an open-source 
computer software library for dataflow. The training 
set is converged into 160 epochs (iterations) which 
were completed in 8 hours on windows operating 
system with Intel corei7 processor and GeForce RTX 
3050ti graphics card. The number of epochs, 160, was 
chosen to achieve maximum accuracy in the validation 
dataset. As shown in Figure 5, the accuracies of the 
training and validation dataset increase when the 
number of epochs in the model is increased while the 
value of loss decreases with the increase of the number 
of epochs. 

 
Figure 5. Training and validation accuracy and loss 

The average training and validation accuracies 
achieved by the developed model were 89.1% and 
84.6%, respectively and the loss calculated for 
training and validation was 0.38 and 0.44 respectively. 
The model calculates the accuracy using equation 3 
and cross entropy loss using equation 4. 

 

(3) 

 

(4) 

Where N is the number of samples and M is the 
number of classes; Zxy represents whether sample x 
belongs to class y or not and pxy shows the probability 
of sample x belonging to class y. The loss has no upper 
limit and it exists in the range [0, ]. The value of loss 
nearer to 0 indicates higher accuracy and vice versa. 
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Furthermore, a confusion matrix is used as a metric 
to evaluate the performance of the developed model 
on the test dataset. On the basis of the results obtained 
in the confusion matrix in the test dataset, the 
precision, recall, and F1 score are calculated using 
equations 5, 6, and 7. 

 
(5) 

 
(6) 

 
(7) 

Where TP is the number of true positives (the 
detected hand signal belongs to the class that is 
shown); FN is the number of false negatives which 
represent that the detected hand signal is not of the 
same class as actually shown, and FP is the number of 
false positives that represent that the detected hand 
signal is of different class and shown hand signal is of 
a different class. The model achieved an average 
precision for all crane signalman hand signals of 
81.5%, and the average value recorded for the recall 
was 81.8%.  

The other metric used to measure the performance 
of the model is the F1 score, which captures the 
properties of both precision and recall and combines 
them into a single unit. The reason for using the F1 
score is that the model cannot be judged only on the 
basis of good results in either precision or recall. The 
F1 score for the developed model was recorded as 
81.7%. Typically, the F1 score falls in a range from 0% 
to 100%, where 0% is poor performance and 100% is 
the best performance of the model. 

6.1. Real-time classification 

The model is further validated by deploying the 
developed model such that it is used to classify the 
crane signalman hand signals in real-time using a live 
stream. The developed DCNN model is validated in 
real-time using live stream by showing all the crane 
signalman hand signals a total of 802 times. The 
model was capable of correctly recognizing the hand 
signals 706 times with an average accuracy of 87.9%. 
The deep learning model was capable of correctly 
recognizing 42 hand signals out of 45 with an accuracy 
of 93.3%, 46 hand signals out of 48 with an accuracy 
of 95.8%, and 51 hand signals out of 52 with an 
accuracy of 98.1% for the labels hoist, stop, and 
emergency stop, respectively. The correctly and 

incorrectly recognized hand signals along with the 
accuracy can be seen in Table 2. The accuracy is 
measured using equation 3.  

The proposed developed framework with deep 
learning model can be implemented in cranes using a 
camera and a screen/ head-up display. The camera is 
used to record the live stream of the signalman hand 
signals, which are transmitted to the screen placed 
inside the crane operator cabin. The developed DCNN 
model shows the results i-e. Classified labels of 
detected signalman hand signals to the screen. The 
operator inside the cabin can see the signalman hand 
signals and their classified labels on the screen. This 
developed framework assists the crane operator to 
take the decision about the movement of load more 
confidently and efficiently. In this way, the framework 
can be used as an improvement to the current state of 
practice for communication between crane operator 
and signalman and serve as another layer of 
communication and safety in crane industry. 

 

Standard Hand signals Number of times crane 
signalman hand signal 
shown in camera 

Number of times crane 
signalman hand signal is 
correctly classified 

Number of times crane 
signalman hand signal is 
incorrectly classified 

Accuracy (%) 

Hoist 45 42 3 93.3 
Lower 42 39 5 88.1 
Use main hoist 49 39 10 79.6 
Use whipline 46 40 6 87.0 
Boom up 48 42 6 87.5 
Boom down 45 39 6 86.7 
Move slowly 48 44 4 91.4 
Swing 47 38 9 80.9 
Boom down and raise the load 40 35 5 87.5 
Boom up and lower the load 39 34 5 87.2 
Stop 48 46 2 95.8 
Emergency stop 52 51 1 98.1 
Travel 41 33 8 80.5 
Dog everything 49 44 5 89.8 
Travel both tracks 36 31 5 86.1 
Travel one track 32 28 4 87.5 
Telescope out 48 42 6 87.5 
Telescope in 47 41 6 87.2 
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7. Conclusions, limitations and future work 

This developed framework presented in this paper 
used a DCNN model to classify the crane signalman 
hand signals in real-time, which will help to improve 
communication between crane operator and 
signalman. The DCNN model is trained using images 
of 18 hand signals that are used by the signalman to 
communicate instructions to the crane operator. The 
collected images are resized, rescaled, and the 
contrast and brightness of the images are adjusted to 
increase the number of images in the dataset, which 
leads to a better generalization of images in the 
dataset and decreases the chances of model 
overfitting. The 8133 images of the 18 crane signalman 
hand signals are passed through the deep convolution 
neural network to train the model to recognize the 
hand signals correctly. The architecture of the 
proposed DCNN model consists of 3 convolution 
layers, 3 max-pooling layers, 3 dense layers, and an 
output layer. The developed model achieved an 
accuracy of 89.1% and 84.6% in training and 
validation, respectively. The precision, recall and F1 
score achieved by the model were 81.5%, 81.8%, and 
81.7% respectively, for the test set. The model is 
further validated for real-time hand signals 
classification, where accuracy of 87.9% is recorded. 
The F1 score was greater than 80% which means the 
model is performing well and the average accuracy of 
87.9% in real-time crane signalman hand signals 
classification makes the model acceptable. However, 
during real-time classification, some misjudgments 
are made by the DCNN model while classifying the 
signalman hand signals, but the crane operator is not 
relying solely on the classification label because the 
screen/ head-up display inside the operator cabin is 
showing the signalman hand signals in real-time 
along with the classification label. The crane operator 
can still take the correct action by looking at the 
signalman hand signal.    

In terms of future research, there is room for 
improvement. For example, a larger dataset of crane 
signalman hand signals images can be used to train 
the model, which would lead to an improvement in the 
performance of the developed DCNN model. Another 
technique is the use of transfer learning with a pre-
trained model in place of using the current model, 
which can reduce the computational time and increase 
accuracy in terms of correctly classifying the crane 
signalman hand signals. Data fusion techniques can 
also be used to classify dynamic hand signals that will 
lead to an improved the accuracy of the deep learning 
models. The development of such model is necessary 
in the crane industry as they help in the construction 
safety improvement and with well-achieved high 
accuracy; they assist towards automation of the 
process and development of automated cranes. 
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