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Abstract
Historical and current aerial photographs are only of great value if the geolocation or address of the photographed areas is also available.In Western Europe, especially Austria, Germany and Czech Republic, there is a market for the sale of aerial photographs of one’s ownprivate residential building. Automated geolocation is a feasible way to enable the sales agents to assign the addresses for the sale morequickly. In the course of this research work, a process chain is modeled that allows the assignment of aerial photographs to residentialaddresses using machine vision. After model-based rectifying the aerial images to compensate for perspective distortions, larger imageblocks get assembled using image stitching. The assignment to a 2D reference map, such as satellite imagery via Google Maps, is doneby applying a U-Net CNN after extracting durable image features such as roads or buildings. The mapping of aerial imagery totwo-dimensional cartography is either automated via registration approaches or based on manually placed corresponding landmarksand homography. Test runs on imagery between the years 1969 and 2020 show that the labor-intensive process of geolocation of aerialimagery can be solved by the proposed process model in a hybrid way.
Keywords: Georeferencing; Aerial images; Feature-Based Image Registration; SIFT; CNN Street Segmentation

1. Introduction

Historical and current aerial photographs are only suit-able for commercial exploitation if it is possible to findout the specific georeferenced position on common maps.While the geolocation of recent images can be determinedby evaluating the GPS data (Praschl et al., 2022), this isnot possible for archive images from earlier decades. Forolder recordings, there are different reasons why georef-erencing may be of great interest. For example, historicaland georeferenced imagery can allow alignment and com-

parison of buildings, landscapes, roads, and rivers acrossdecades. Furthermore, it is also of great interest for own-ers of private buildings to acquire aerial photographs thatshow their own residential property centrally and in highgloss. Especially in the central European area (Germany,Austria, Czech Republic) there is a market for such aerialphotographs. Special providers fly over individual citiesand create a sequence of individual shots of private homes.However, these images can only be efficiently distributedto private households via salespersons if an ideally auto-
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mated assignment of the images to the respective geoloca-tions can take place. Otherwise, the manual assignment orsearch by the selling agents for the correct house numberof the photographed contents is a tedious but necessarystep in order to be able to aim for a successful sales pitch.To create these aerial photos, a photographer is trans-ported over the target area via aerodyne (helicopter or air-plane or, in the future, possibly also drones) and therebyphotographs the individual houses in a professional man-ner. While the image acquisition process can be carried outquickly, the subsequent manual geolocation as a basis fora possible distribution of the images is a much more labor-intensive process, especially if comprehensive historicalarchives are to be processed.Consequently, in the course of this work, proceduresfor semi-automatic georeferencing are presented, whichshould significantly accelerate and automate the distribu-tion and processing of image archives in the future.
1.1. State of the Art

Image registration always necessitates a set of robust fea-tures being present in both, the moving image A and thereference image B. Based on these features, image regis-tration can then be applied with either rigid/affine, elas-tic or perspective transformation of the pixel coordinatesas in-depth delineated by Sonka and Fitzpatrick (2000).However, for aerial images due to the acquisition angle andperspective distortion, simple affine transformations suchas translation, rotation, scale or sharing are insufficient.Instead, rectification of the images as pre-processing stepis highly recommended prior to the particular image reg-istration. Thereby, various aspects of the imaging systemcan be taken into account.Jaimes and Castro (2018) introduce an algorithm foraerial image rectification that takes the exact orientation(pitch, roll and yaw) of the aerodyne into account whichis generally unknown if no Inertial Measurement Unit(IMU) sensors are attached to the camera device. Withan IMU unit being attached for the image acquisition pro-cess, aerial image rectification can be achieved in a robustand accurate way as described by Popescu et al. (2015). Inrectification of aerial images, incorporation of the geodesicinformation of the terrain, allows to improve quality of re-sults as delineated by (Cheng et al., 2000), in cases where3D topography information of the terrain is available. Nev-ertheless, even with only the FOV angle of the camera anda rough approximation of the recording angle being avail-able, aerial image rectification can help improve the resultsof subsequent image registration as analyzed by Praschlet al. (2022).Pixels can be directly utilized as input features onlywith rigid registration and if the perspective of images Aand B are perfectly matching, allowing for sum of squarederrors (SSE) or mutual information (MI) metrics beingapplied according to the nature of the imaging modalitiesaccording to Hajnal and Hill (2001).

To reduce run-time complexity compared to pixel-wisemetrics for image registrations, a broad range of featuredetectors is applicable. With Hessian and Harris corner de-tectors, the images get restricted to relevant and discrim-inable areas, see Harris and Stephens (1988) allowing forregistration based on the iterative closest points algorithmas delineated by Arun et al. (1987). If instead of sparse posi-tional features, contour segmentations are present in bothof the images, then Chamfer Matching can be applied uti-lizing an Euclidean Distance Map, see Barrow et al. (1977),which can lead to a massive speed-up compared to ICP. Incase of using contours of segmentations as criterion forChamfer matching image registration, the pixel count canbe reduced by extracting the geometric inner object pathmodelled as a graph rather than the segmentation maskitself. This can be achieved by Hough transformations,cf. Chmielewski (2004), or skeletonization / medial axisextraction, as proposed by Zheng et al. (2010), for example.
If corresponding landmarks are present in both the im-ages A and B, then the registration process can be solvedas numerical problem rather than heuristic search prob-lem. Thereby, corresponding landmarks can result fromexplicit domain-specific landmark extraction (Seim et al.,2009) or feature descriptors that allow to describe a partic-ular image location in a numerically solvable way such asKAZE (Alcantarilla et al., 2012), ORB (Rublee et al., 2011) orthe highly prominent SIFT feature detector (Lowe, 1999)If none of these feature descriptors allows to derive corre-sponding landmarks in a robust and automated way, man-ual inspection and placement of the markers can serveas fast, yet manual, fallback strategy allowing for directimage warping based on the homography matrix, see Ma-galhães (2022) and Szeliski (2006).

1.2. Related Work

Registration of images and in particular aerial image has abroad range of applicability. Exemplarily, image stitchingis the process of combining several slightly shifted and/orrotated images to assemble a larger, often panorama photo,(Mann and Picard, 1994; Szeliski, 2006). With the particu-lar images largely overlapping and a narrow perspectivevariability, these algorithms nowadays allow for panoramaimage stitching on conventional smartphones.
If the pose of the camera, heavily varies during imageacquisition, then conventional image stitching will not beapplicable due to perspective warping. Nevertheless, suchvideo sequences of a moving camera recording and a ratherstatic scene are the perfect setup for photogrammetric re-construction with structure from motion (SfM) (Westobyet al., 2012). Thereby, perspective image transformationsand feature-trajectories are incorporated for a 3D surfacereconstruction, as available from many applications nowa-days (Bianco et al., 2018). In case of aerial images, thisreconstructed 3D topography approximates a bird’s eyeperspective and thus can get registered for geolocalization,too (Aicardi et al., 2016).
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In the field of aerial image geocoding, the work of (Alli-son and Muller, 1993) introduces a highly precise methodincorporating multi-spectral images used for a pixel-wiseregistration process. This high level of accuracy is not ne-cessitated for the reverse geocoding of aerial images toease the image-to-building assignment for the salesper-sons as it is the focus of this paper.
Geometric visual features such as lines, curves and arealregions derived from aerial images are used for a landscapeand topography-aware image rectification process in thework of Long et al. (2015). In contrast, similar features areused for image registration in our work, only.
For segmentation of durable landmarks, such as riversand land areas (Pai et al., 2019), buildings (Liu et al., 2020)or streets (Henry et al., 2018) several approaches existwith satellite imagery. Nevertheless, such deep-learningbased approaches heavily depend on the nature of the inputimages. If the recording angle is much smaller than 90◦

bird’s eye perspective of satellite, models might fail, cfrailroad surveillance (Wang et al., 2019).
1.3. Strategies for Semi-Automated Registration of His-

toric Aerial Photographs

In this research work, we aim at geo-referencing of his-toric aerial photos from image registration. As the se-quences are quite sparse, conventional SfM photogramme-try is not possible. Thus, only semi-automated approachesare applicable for this kind of input data. Besides, due tothe lack of knowledge regarding the camera pose, conven-tional approaches for image rectification are not applicabledue to the lack of information. Thus, a very simple rectifi-cation model for aerial images needs to be applied in thispaper, cf. Praschl et al. (2022). In this paper we addressthe following research questions:
• Is it possible to assemble larger 2D image patches fromsparsely overlapping aerial images?• Can durable landmarks such as streets and buildingroofs be utilized for automated image registration?• Can a combination of automatically registered aerialimages and manually mapped images allow for reversegeocoding when registering them with a bird’s eye map,e.g. from a satellite image?

The article is structured as follows: In Section 2 the im-age material utilized for this research work is addressed. InSection 3 the methodologies for semi-automated and au-tomated geocoding of the heterogeneous image sequencesare delineated, while in Section 4 details regarding the im-plementation are provided. The practical applicability ofthe proposed process models is evaluated in Section 5 withquantitative and qualitative results discussed in Section 6.An outlook on future work and the general applicability inthe industrial and modelling context completes this articlewith Section 7.
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Figure 1. Illustration of the image acquisition. When recording the aerialimages, the aerodyne flies along a predefined route with the on-boardphotographer taking pictures of the buildings at a recording angle α ≈ 40◦.For historic images without GPS the flight height is unknown.

Figure 2. Sample images from year 2012, area code "A 7 058 11". The aerialimages 6, 10, 11 and 12 are partially overlapping allowing for subsequentimage stitching after rectification.

2. Material

The aerial image data set comprises photograph sequencesacquired between the years 1969 and 2020. The older im-age sequences (years 1969-1972) show a size of 3245×2165pixels at 24bit gray scale while 24bit RGB images of theyears 1979 to 1984 show an iso-image size of 1393 × 1393pixels; all with a recording angle around 40◦, see Fig. 1.For the recent years (2017-2020) available GPS data isnot utilized for the algorithms. For the most recent pho-tographs starting in 2021, a GoPro Cam was statically in-stalled on the aerodyne to provide a video sequence duringthe aerial image acquisition process.Image sequences comprise sequentially aligned pho-tographs from a single flight with the trajectory plannedprior to the flight, see Fig. 2. The image sequences re-ferring to a single flight thereby comprise µ = 84 ±50.15[34; 162] images. Images can either be registeredwith other images of the sequence to incrementally pro-duce larger conglomerates or be registered with a bird eyereference image, e.g. a satellite image. Inter sequenceimage registration is considered possible if union of twoimages A and B covers at least∼ 5% of the image area. Thisis the case for ratios µ = .2866 ± .2017[.0857; .6626] of theimages within the sequences.



Figure 3. Satellite images at scale = 20 from neighbouring tiles 0_0_1 and
0_0_2 of the mapped target area.

Besides, satellite images are required to develop andtest registration for geolocalization. Therefore, GoogleMaps is utilized, cf. 3. Overall, n = 1000 32bit RGB satellitetiles at pixel size 1920 × 1080 at scale = 17 are prepared tocover the acquisition area of the testing images.
3. Methods
An overview of the proposed automated and semi-automated registration approaches presented in this paperis provided in Fig. 4. For the image sequence to process,a preliminary manual verification is necessary to check,weather the location of the image acquisition is knownand if a reference map (e.g. google maps or 3D photogram-metry) is available for this area. Otherwise, the process isterminated as besides partial image stitching no reversegeocoding would be possible.The aerial imagery is recorded at an angle α ≈ 40◦. Thisleads to an approximate trapezoid distortion of the imagescompared to bird’s eye perspective and necessitates forcorrection.Subsequently, the rectified images get clustered by uti-lizing automated image stitching. The final step is thento register the clusters of aerial images with the 2D ref-erence map. This can be achieved at two different ways.Either durable and static landmarks get extracted from theimages to allow for automated registration or manuallyplaced markers allow the image superposition based onimage warping. With the aerial image clusters placed onthe georeferenced 2D map, a method for reverse geocodingis given.
3.1. Image Rectification

The aerial imagery is recorded at an angle α ≈ 40◦, cf. Fig.5. Thus, the subsequent registration with 2D referencemaps in bird’s eye perspective, such as satellite images,would lack from a mismatch in perspective. Consequently,a rectification process is required that corrects these geo-metric issues as in-depth delineated in Praschl et al. (2022)by projecting all pixels onto the virtual ground plane uti-lizing bilinear interpolation. For rectification, only theparameters width, height, the diagonal FOV angle δ andthe approximation for the recording angle α are known.Based on these values, the focal length fl in pixel spaceas well as the vertical and horizontal FOV angles fv and fhrespectively can be calculated.

NoRoute/area 
available? Fail

Stitch images

Register images with
map

Rectify aerial images Get digital map of area
(e.g. Google Maps, 2D

Scan, 3D Photo-
grammetry, ...)

Yes

Reverse geocoding

Get Position

Aerial Images

No

Yes

All Images 
clustered?

No YesRegister manually?

Extract invariant
information (e.g. roofs,

streets, ...)

Manually define four
reference points

Figure 4. Overview of the Process Model. Input images need to show at leasta hint for the rough geolocation to execute the proposed process model.After rectification and stitching of the aerial images, they get registeredwith the 2D reference map for geocoding by either using automatic segmen-tations of durable landmarks or by a sufficient number of manually placedlandmarks. The final process step of the reverse geocoding model aggre-gates the clustered images with a 2D reference map in a semi-automatedway.

Figure 5. Illustration of the image rectification process. With unknownheight and known viewing angleα and FOV angleδ the projected 2D imagescan get rectified.

3.2. Stitching of Aerial Images

After the rectification process, the aerial images can getstitched if they are partially overlapping. Thus, the inputimage sequence is transformed into clusters of aerial im-ages manifesting a virtual 2D map. For image stitching,an algorithm based on SIFT (Lowe, 1999) feature mappingis utilized. With the scale- and orientation invariant im-age features derived from the SIFT operator, prominentareas of the images can get described by a 128-element
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real-valued vector. With a particular feature and it’s neigh-bour features being present in two images of the sequence,these congruent areas can get matched utilizing a bruteforce feature matching algorithm available from OpenCV,cf. Noble (2016). Based on the corresponding features, ahomography matrix is determined, thereby eliminatingpotentially outliers, i.e. invalid feature trajectories. Basedon this homography matrix, the images get stitched to-gether (Brown and Lowe, 2007).The described stitching process leads to a reductionin images, as the sequence of aerial image frames getsreduced to locally coherent clusters. Due to smooth bordertransitions of the stitched images, application of U-Netbased segmentation of durable landmarks such as streetsor buildings can be processed on the input aerial imagesand the image clusters after stitching, too.
3.3. Segmentation of Durable Image Features

In general, databases for aerial images with attached ref-erence segmentations are hardly available or result froma totally different image acquisition setup. Thus, our U-Net CNN is trained by utilizing n = 7500 RGB satelliteimages available from a digital map service. Due to the factthat our aerial images get rectified, a very similar bird’seye perspective compared to common satellite imagery isgiven anyways. Thus, paradigms of transfer learning areapplicable, cf. Weiss et al. (2016). Thanks to the digitalmap service, the ground truth for the streets can get de-rived from the particular map views from map sectionsof size 1920 × 1080 with varying zoom levels. To signifi-cantly enrich the data set used for training, several imageaugmentation strategies get applied to increase the vari-ability regarding orientation, brightness and noise level,cf. Zwettler et al. (2020). In out work, we utilize the fol-lowing augmentations strategies that are performing wellon aerial and satellite images, namely horizontal/vertical
flip, scale, rotation, blur and noise as well as adaptions on
brightness, contrast, saturation and hue.
3.4. Automated and Manual Registration With The 2D

Reference Map

For automated registration, both the segmentation maskderived from the rectified aerial image as well as the 2Dmap of the area are necessitated as input. To allow fora Chamfer matching registration, an Euclidean distancemap Deuclid is calculated based on the chosen features, e.g.street segmentations, denoted as P and P′′ for the aerial im-age and the reference map, respectively. Based on Deuclid,calculated from P′′, and P of the moving aerial image asum-of-squared error (SSE) metric is evaluated as

P′ = F(P, θbest,Txbest ,Tybest , Scxbest , Scybest , Skxbest , Skybest ) (1)
with F : R2 → R2 as affine transform. The over-

all best transformation Fi is identified by minimal SSEerror, see Equation 2. The multi-dimensional and real-valued search space is getting iterated at permutations ofthe discrete ranges of rotation θ ∈ [−θmin; θmax], transla-tion along x-axis Tx ∈ [−Tx; Tx], translation along y-axis
Ty ∈ [−Ty; Ty], as well as x-scaling Scx ∈ [−Scx; Scx], y-scaling Scy ∈ [−Scy; Scy], x-skewness Skx ∈ [−Skx; Skx]and y-skewness Sky ∈ [−Sky; Sky].

θbest,Txbest ,Tybest , Scxbest , Scybest , Skxbest , Skybest =
arg min

θ,Tx,Ty,Scx,Scy,Skx,Sky

|P|∑
i=1

(Deuclid(P′′)[F(P, θ,Tx,Ty,

Scx, Scy, Skx, Sky)[i]])2
(2)

The continuous search space is discretized at k = 11steps, leading to a search radius r = 5 around the globalbest Fbest after each entire iteration. To incrementally ad-just from global to local search, for the m = 10 optimizationruns, the search area is scaled with factor si = 0.9i for eachof the subsequent iterations.
In case of the images to register being acquired fromtotally different viewing directions or no robust mark-ers/landmarks being visible in the particular aerial im-ages that could be detected, the automated registrationprocess will fail. Consequently, a proper fallback strategyis necessitated, allowing to finish the image stitching andregistration in a semi-automated way. To do so, at least4 corresponding landmarks need to get placed in both ofthe images taking care, that they refer to positions in 3Dspace of approximately the same altitude. Based on de-fined reference positions, homography is calculated forautomated affine warping of the images, see Magalhães(2022); Szeliski (2006).

4. Implementation

The method presented in this research work are imple-mented with Python 3.7 and OpenCV 4.5.4 (Bradski, 2000).For training the U-Net on street and building segmenta-tion, Tensorflow 2 (Abadi et al., 2016) in version 2.8 isutilized.
Image warping based on homography is uti-lized via cv::warpAffine() method instead of

cv::warpPerspective() as the aerial images are alreadyrectified at the time of calling.
For the street segmentation U-Net, the solution as pro-posed by Ronneberger et al. (2015) is re-implemented withTensorflow. Thereby, n = 5 up and down-sampling layersare implemented with input tensor size of (3, 112, 112) ata batch size of 16 and smallest image size (3,8,8) duringU-Net down-sampling. For training, Adam optimizer witha learning rate of l = 0.003 and 200 epochs is utilized.



Figure 6. Test runs on image 10 of sequence "A 7 058 11" from 2012. Theoriginal aerial image and the result after rectification.

Figure 7. Test runs on images of sequence "A 7 058 11" from 2012. Withrectified images 6, 10, 11 and 12 image stitching of the particular street ofhouses becomes possible.

5. Results

In this chapter, results on the particular process steps ofthe processing pipeline for semi-automated registrationof aerial photographs are presented.
5.1. Results from Image Rectification

Tests on the image rectification process show that evenwith a rough and thus potentially inaccurate approxima-tion of the recording angle α the geometric properties ofthe aerial images get improved. Analyzing potentially lin-ear and parallel structures such as roof tops shows an in-creased level of straightness compared to the input datawhen analyzing the Hough space (Chmielewski, 2004).Tests on the image sequences show that rectified im-ages are perfectly applicable for the delineated imagestitching process as long as a high enough ratio of theparticular image areas is overlapping, see Fig. 6.
5.2. Results from Stitching of Aerial Images

Based on the rectified images as seen in Fig. 2, the sub-sequent process of image stitching is boosted as all theimages to assemble are now approximately in bird’s eyeperspective. Results of stitching four neighbouring andpartly overlapping images can be found in Fig. 7.
5.3. Results from Segmentation of Image Features

Exemplary results from U-Net based street segmentationas a robust and durable image feature can be found in Fig.8. Thanks to the chosen augmentation process for thetraining, streets can be segmented in a solid way for all

Figure 8. U-net based segmentation allows solid identification of the streetsas target structures. Despite occlusions, the particular street fragmentsare provided at high quality with only few FP scatter present.

Figure 9. Roof segmentation from reference map (first column) and aerialimage (second column) allows for roof-based registration after Hough linedetection.

areas of the image. In case of occlusions, the mask result isof course missing. The TP areas of the streets are compactand free from notable artifacts. In contrast, FP areas areformed from small bulks of artifacts.Besides for street segmentation, another U-Net istrained for building (roof) segmentation. Based on thedetected roof sections, the outer contours can get detectedutilizing Hough lines to serve as registration features, seeFig. 9.
5.4. Results on Registration with the 2D Reference Map

Test runs on the automated registration approach proofthat a) the quality of results from the subsequent imagesegmentation is sufficient and b) that the fully-automatedregistration approach leads to correct results even if theperspective of the images is differing and only parts of thepre-segmented image features are congruent. See Fig. 10for results on the image registration process. Even withboth streets showing a highly different shape, orientation,scale and segmentation quality, the chosen search strategyleads to a very good match of the image areas.Another registration example is presented in Fig. 11.With parameter settings −45 ≤ skew ≤ 45 and 0.8 ≤
scale ≤ after 15,000 evaluated positions the error regard-ing orientation is 1.245◦ only. Results are definitely ac-
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Figure 10. Based on Euclidean distance maps derived from the street seg-mentations derived from the previous process the image registration isperformed. Even with a clear mismatch in street characteristics, i.e. miss-ing parts, street thickness, the local optimum is approached in a robustmanner.

Figure 11. Registration of aerial images (top row) with Google maps satellite(middle row) leading to precise overlap and thus geolocalization.

curate enough to determine the address of the particularbuildings.Registration based on manual markers is a solid backup-approach. Nevertheless, the markers should be a) definedclose to the ground level and b) spanning up a larger area.Otherwise, image warping with homography might leadto inaccurate results necessitating for registration-basedpost-processing, see Fig. 12.
6. Discussion and Conclusion

Regarding the described image processing pipeline, initialrectification of the aerial images proofs to be of high impor-tance. For the subsequent image stitching it is inevitable,that due to the rectification the reduced image area is over-compensated by a better geometric match of the imagecontent. Result quality heavily depends on the local land-scape. The flatter the surrounding region is, the better ourmodel assumptions allow to describe the real word. Thesame aspect is true w.r.t. buildings and other objects ofheight. While the rectification allows to correct ground ar-eas very well, objects showing a noteworthy height cannotbe correctly transformed into bird’s eye perspective.

Figure 12. Registration based on 4 manual landmarks precisely defined onthe building roof.

The automated process of registration leads to robustresults even if the street segmentations are not of highestquality. With the chosen registration approach based onthe Euclidean distance map, partial occlusions and mis-match in object thickness and perspective can get com-pensated quite well. The chosen search strategy allowsto smoothly transition from global to local search at lin-ear run-time w.r.t. the target number of search iterations.Features derived close to the ground level and spanning alarger area are to be preferred. Thus, street segmentationslead to better results compared to roofs, cf. Fig. 12.Regarding the search strategy, the current approachfeatures a strictly deterministic search through the con-tinuous search space which leads to a solid level of quality.Nevertheless, incorporating aspects of gradient descentsearch or simulated annealing would allow to introducesome stochasticity and thus increase the chance to furtherapproach the maxima of the search space.
7. Outlook

Based on the presented methods and tool sets for semi-automated aerial image registration, the step-wise inte-gration into the business workflow of AMIDO trading ltd.can be achieved. Thereby, the focus will be laid on a semi-automated strategy allowing for the best balance betweenautomation and expert-user guidance.The registration of aerial images based on the road tra-jectories can be further refined in the future by usingonly the inner course, cf. skeleton or medial axis, in-stead of the cross-sectional area of the roads. By applyingmixed-adjacency, the road course can be transformed intoa vectorized graph data structure. This has the advantagethat geolocations can be found from distinctive referencestreets as rough registration. Furthermore, it is expectedthat the restriction to the logical road course can lead toadvantages in terms of performance as well as accuracy.Besides the discussed street and roof segmentations be-ing utilized as landmarks for the registration process, theapplicability of rivers with their characteristic and durablecourse will be evaluated in future, too. Not all local villages



and urban entities will show a stream course. Nevertheless,in the case of a river being present, it is highly expectedto serve as a strong and prominent landmark detectionsystem further allowing to identify the rough geolocationfrom graph analysis of the river course.Furthermore, the landmarks from street, river coursesas well as from roofs can then be combined in a multi-criteria registration approach to strengthen robustness ofthe proposed algorithms for semi-automated geolocation.In addition to the practical application of the proposedprocess model for the industrial domain, the individualprocess steps, such as image rectification or even the ex-traction of durable image properties, are a basis for futuremodelling and simulation. For example, if test data is tobe synthesized, the same intentional bias model can beapplied to prepare realistic scenarios, such as for machinelearning applications. Furthermore, the evaluation andmodeling of the decades-long landmarks opens up tar-geted strategies for image registration in the future.
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