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Abstract 
In a Vendor Managed Inventory (VMI) supply chain there is the challenge to deliver the products to the consumers within desired 
time at minimum cost. This paper proposes an optimization model to solve the production-routing problem (PRP) minimizing 
both manufacturing and transportation costs; this model excels in the consumer-packaged goods industry with flexible, 
interconnected, and complex manufacturing networks. This work’s contribution relies in the optimization model approach by 
having the variables in units, unlike jobs, which has been the standard in literature but not in the industry. Also, this paper offers 
a flow shop scheduling scheme for manufacturing processes containing set ups constraints with a from-to products matrix 
behavior. 
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1. Introduction 

Throughout the years, companies have had an arduous 
search to position their consumer goods within the 
reach of the general population. With the evolution of 
modern manufacturing came the establishment and 
management of supply chains (Mourtzis and Doukas, 
2014). Usually, the supply chain begins with the supply 
of raw materials, to be then processed at 
manufacturing facilities, where the raw material is 
transformed, and a finished product is obtained. Later, 
this finished product is taken to warehouses where 
transportation routes are created to finally deliver the 
requested products to customer facilities. 

Costs are incurred in each of the steps mentioned, 
which can be grouped into production, storage, and 
transportation costs. Once the supply chain has been 
successfully managed, the next logical step in decision 
making is to find room for improvement in 

optimization to minimize the total landed cost. 

The structure for this work state as follows, in 
section 2, the state of the art for the production-
routing problem is addressed. Then, in section 3 the 
optimization model proposal is presented. After, in 
section 4 a case study to validate the model is offered 
followed by the results and discussion in section 5. 
Finally, in section 6 the conclusions and next research 
lines are discussed. 

2. State of the art 

Given a network where products flow, the possibility of 
doing so at a lower cost has been approached for 
decades. The first time this problem was documented 
was as a generalization of the classic Traveling 
Salesperson Problem (TSP) (Dantzig and Ramser, 
1959) to originate what later became the Vehicle 
Routing Problem (VRP) that has continued to be 
developed along numerous research lines in recent 
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decades. A generalization of VRP came through the 
inclusion of inventory management, resulting in the 
Inventory Routing Problem (IRP), first mentioned in a 
daily delivery planning application for the Air Products 
& Chemicals company (Bell et al., 1983), where they 
generated operating savings from 6% to 10%. The IRP 
problem was later formulated and generalized 
(Federgruen and Zipkin, 1984). 

At this point in time, no author had integrated 
manufacturing within the model, but it is essential to 
include this section to optimize the entire supply chain. 
Thus, the production-routing problem (PRP) arises 
from the need to optimize not only the routing and 
storage of products, but also the production phase. 
Consequently, the PRP is created by joining two 
historical models, the routing and inventory part 
comes from the IRP and it is mixed with the production 
facet of the Lot Sizing with Direct Shipment (LSDS) 
(Adulyasak et al., 2015). 

The first PRP model aimed to minimize both fixed 
setup production costs and distribution costs in an 
integral model of production and distribution (Chandra 
and Fisher, 1994). With this article as a starting point 
for the PRP, they only considered a single 
manufacturing plant with fixed costs. Specifically, a 
minimization of the variable production cost is not 
included in their objective function since there are no 
costs variations that usually is obtained when 
producing at various facilities. The first model that 
considers a multi-plant optimization can be seen in the 
work of (Lei et al., 2006). From these contributions, an 
important development in the resolution of PRPs 
began, which has had a boom in the last decade, an 
extensive review of literature and resolution 
algorithms has been developed already (Adulyasaak et 
al., 2015). 

The PRP has been subject to numerous 
applications. Such is the case of (Neves-Moreira et al, 
2019), where a problem with several production lines 
and deliveries with time windows is addressed. In (Qiu 
et al., 2021) they solve a two-echelon supply chain 
problem by having satellite cross-docks between the 
plant and the customers. Alternatively, not all 
applications seek financial benefits, in (Qui et al., 2017) 
they propose a branch-and-price algorithm to 
minimize CO2 emissions through the resolution of the 
PRP. While our work presents a specific case study, we 
believe that the proposed formulation could be applied 
in several industries that mainly are established as 
Vendor Managed Inventory (VMI) supply chains where 
vertical integration is a main factor. 

Furthermore, some authors have solved the job-
shop scheduling problem with simulation tools 
(Bottani et al., 2017), but since this type of facility with 
department-oriented process layout pretends to solve 
low volume and high flexibility industries, this 
approach focuses more on make-to-order (MTO) 
businesses. On the other hand, flow-shop oriented 
facilities are more suited for high volume and low 

flexibility by having a product layout which is more 
aligned with VMI supply chains for consumer-
packaged goods industry (Zhao, 2019) which is 
addressed in this work. 

Accordingly, the flow-shop scheduling problem 
solves the order in which products should be processed 
in a factory that is normally designed with successive 
processes and parallel machines where product flows in 
a single consecutive and continuous direction. Within 
this approach, some authors have formulated to 
minimize the total time starting at manufacturing to 
final delivery (Yagmur and Kesen, 2021), whereas 
others have continued to be aligned with cost 
minimization for the entire supply chain (Scholz-
Reiter et al., 2011). In this work, we mainly overlap with 
the latter case, however, the main difference and one of 
the key contributions is the definition of the model 
unit. The traditional flow shop scheduling is based on 
jobs, each job must be previously defined as the sum or 
the total amount of product to be manufactured and 
transported for a single order, yet companies typically 
manufacture in high volumes and consolidate orders to 
be delivered only at warehouses by using a specific unit 
through the entire supply chain such as pieces, boxes, 
kilograms, liters, etc. In consequence, the model 
presented in the following section is based on mere 
units to have enough flexibility to be implemented in 
several cases, removing the ambiguity caused by jobs 
that need to be predefined. 

As mentioned previously, the PRP started by 
focusing on setups, in this case (Chandra and Fisher, 
1994), in the minimization of the setup costs. In 
contrast, the flow-shop scheduling problem minimizes 
the setup times between different products. 
Alternatively, something that has not been explored in 
the literature, is the special case of setup times 
depending on from-to matrix behavior. This type of 
behavior is commonly found in the food industry, 
where different SKUs are made within the same 
production lines and setup duration times depend on 
from which type of product the change is taking place 
to the type of product that runs next. 

Since this problem contains the VRP which is NP-
hard, hence, the resolution of the PRP model to be 
proposed will be as well NP-hard. For this reason, the 
computational complexity problem also arises. To 
solve this, some authors have developed heuristics 
(Avci and Yildiz, 2020; Meinecke and Scholtz-Reiter, 
2014; Qiu et al., 2017), while others have opted for 
metaheuristic techniques (Neves-Moreira and 
Almada-Lobo, 2019; Qiu et al., 2018). Nevertheless, this 
paper does not focus on the resolution methods for the 
PRP or the flow-shop scheduling. Our contributions 
obey entirely to the novelties presented in the model 
formulation, reflected in the units instead of jobs case 
and setups with from-to behavior. 
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3. Problem formulation 

The mathematical model was developed for a multi-
facility flexible network where the same product can be 
processed in different factories. In this model, a single 
echelon is considered, starting in factories, and 
carrying the product to the company’s warehouses, 
where the demand is placed. This type of supply chain 
management is typically implemented by the 
consumer-packaged products industry which often 
operate in a VMI scheme. Since there is no intention to 
have finished product storage within the plants, no 
inventories will be considered for this model, 
therefore, the model will only consider production and 
transportation costs. 

Moreover, this model pretends to solve the 
scheduling for the manufacturing phase. Also, this 
formulation solves complex setup times constraints, 
which behavior can be explained by a for-to matrix. As 
mentioned previously, this constraint is common in the 
food industry due to allergens, different meat species 
or any factor that involves a deep cleaning, e.g., in an 
ice cream factory, vanilla and chocolate flavor products 
are processed on the same line, the cleaning time 
between flavors from vanilla to chocolate could be half 
an hour, but from chocolate to vanilla the cleaning time 
could be increased to one hour.  

The complete optimization model is described 
below. 

3.1. Sets 

Products 𝑗 ∈ 𝐽 

Machines 𝑚 ∈ 𝑀 

Production level 𝑛 ∈ 𝑁 

Production order 𝑜 ∈ 𝑂 

Factory 𝑓 ∈ 𝐹 

Warehouse 𝑎 ∈ 𝐴 

3.2. Parameters 

𝑐𝑗𝑓
𝑝 : Unitary production cost of product 𝑗 at factory 𝑓 

𝑐𝑓𝑎
𝑡 : Unitary transportation cost from factory 𝑓 to 

warehouse 𝑎 

𝑡𝑝
𝑗𝑚𝑛𝑓: Unitary production time of product 𝑗 at machine 𝑚 

at production level 𝑛 at factory 𝑓 

𝑡𝑎
𝑗𝑗′𝑚𝑛𝑓: Setup time from product 𝑗 to 𝑗’ at machine 𝑚 at 

level 𝑛 at factory 𝑓 

𝐻𝐷𝑚𝑛𝑓: Available hours per machine 𝑚 at level 𝑛 at factory 
𝑓 

𝐷𝑗𝑎: Demand for product j at warehouse 𝑎 

𝑀: very large number 

3.3. Positive variables 

𝑥𝑗𝑚𝑛𝑜𝑓
𝑝 : production units for product 𝑗 at machine 𝑚 at level 

𝑛 at order 𝑜 at factory 𝑓 

𝑥𝑗𝑓𝑎
𝑡 : transportation units for product 𝑝 from factory 𝑓 to 

warehouse 𝑎 

𝑡𝑓
𝑗𝑚𝑛𝑓: completion time for product 𝑗 at machine 𝑚 at level 

𝑛 at factory 𝑓 

3.4. Binary variables 

𝑋𝑗𝑚𝑛𝑜𝑓: binary variable denoting that product 𝑗 is processed 
at machine 𝑚 at level 𝑛 at order o at factory 𝑓 

𝑌𝑗𝑗′𝑚𝑛𝑓: binary variable denoting that product 𝑗 is processed 
before product 𝑗’ at machine 𝑚 at level 𝑛 at factory 𝑓 

3.5. Objective Function 

The objective function minimizes the total landed 
cost given by the sum of production and transportation 
costs. 

𝑍𝑚𝑖𝑛 = ∑ ∑ ∑ ∑ 𝑐𝑗𝑚𝑛𝑓
𝑝

∗ 𝑥𝑗𝑚𝑛𝑜𝑓
𝑝

𝐹

𝑓=1

1

𝑛=1

𝑀

𝑚=1

𝐽

𝑗=1

+ ∑ ∑ ∑ 𝑐𝑓𝑎
𝑡 ∗ 𝑥𝑗𝑓𝑎

𝑡  

𝐴

𝑎=1

𝐹

𝑓=1

𝐽

𝑗=1

 

(1) 

3.6. Constraints 

The amount of product that is transferred from the 
factories must satisfy the demand assigned to each 
warehouse. 

∑ 𝑥𝑗𝑓𝑎
𝑡 ≥ 𝐷𝑗𝑎 (∀ 𝑎, 𝑗) 

𝐹

𝑓=1

 

(2) 

This model does not contemplate the capacity to 
store inventories, so the amount of product that is 
manufactured must be equal to the amount that is 
transported. 

∑ ∑ ∑ 𝑥𝑗𝑚𝑛𝑜𝑓
𝑝

𝑂

𝑜=1

1

𝑛=1

𝑀

𝑚=1

− 𝑥𝑗𝑓𝑎
𝑡 = 0 (∀ 𝑗, 𝑓, 𝑎) 

(3) 

The completion time for every product must be 
less than the available hours that each machine 𝑚 in 
every level 𝑛 has. 

𝑡𝑓
𝑗𝑚𝑛𝑓 ≤ 𝐻𝐷𝑛𝑚𝑓  (∀ 𝑗, 𝑚, 𝑛, 𝑓) 

(4) 

The binary variable 𝑋𝑗𝑚𝑛𝑜𝑓  is being activated 
when at least one unit of 𝑥𝑗𝑚𝑛𝑜𝑓

𝑝  is processed, these 
binary variables are necessary to trigger setups in the 
following constraint. 

𝑀𝑋𝑗𝑚𝑛𝑜𝑓 ≥ 𝑥𝑗𝑚𝑛𝑜𝑓
𝑝

 (∀ 𝑗, 𝑚, 𝑛, 𝑜, 𝑓) 

(5) 
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The binary variable 𝑌𝑗𝑗′𝑚𝑛𝑜𝑓  is conditioned to 
activate only if the binary variables 𝑋𝑗𝑚𝑛𝑜𝑓  and 
𝑋𝑗′𝑚𝑛𝑜+1𝑓  take the value of 1, therefore, there will only be 
a setup between 𝑗 and 𝑗′ when they correspond to the 
order 𝑜 y 𝑜 + 1, respectively. 

1 − 𝑀(2 − 𝑋𝑗𝑚𝑛𝑜𝑓−𝑋𝑗′𝑚𝑛𝑜+1𝑓) ≤ 𝑌𝑗𝑗′𝑚𝑛𝑓  (∀ 𝑗, 𝑚, 𝑛, 𝑜, 𝑓) 

(6) 
For every machine 𝑚 in every level 𝑛 only one 

product can be processed at a time, in this way the 
sequence for each order 𝑜 is respected. This constraint 
will only be active when the product 𝑋𝑗𝑚𝑛𝑜𝑓  is followed 
by 𝑋𝑗′𝑚𝑛𝑜+1𝑓, likewise, only in this case the setup 𝑌𝑗𝑗′𝑚𝑛𝑓  
is activated. 

𝑡𝑓
𝑗𝑚𝑛𝑓 + 𝑡𝑝

𝑗′𝑚𝑛𝑓 ∗ 𝑥
𝑗′𝑚𝑛𝑜+1𝑓
𝑝

+ 𝑡𝑎
𝑗𝑗′𝑚𝑛𝑓 ∗ 𝑌𝑗𝑗′𝑚𝑛𝑓

≤ 𝑡𝑓
𝑗′𝑚𝑛𝑓 + 𝑀(2 − 𝑋𝑗𝑚𝑛𝑜𝑓 − 𝑋𝑗′𝑚𝑛𝑜+1𝑓)

+ 𝑀(1 − 𝑌𝑗𝑗′𝑚𝑛𝑓) (∀ 𝑗, 𝑚, 𝑛, 𝑜, 𝑓) 

(7) 

For the same product 𝑗, its completion times 
are forced to go up as it progresses through levels 𝑛, 
consequently, it cannot enter level 2 if it has not 
finished processing in level 1. 

𝑡𝑓
𝑗𝑚𝑛−1𝑓 + 𝑡𝑝

𝑗𝑚𝑛𝑓 ∗ 𝑥𝑗𝑚𝑛𝑜𝑓
𝑝

+ 𝑡𝑎
𝑗′𝑗𝑚𝑛𝑓 ∗ 𝑌𝑗′𝑗𝑚𝑛𝑓

≤ 𝑡𝑓
𝑗𝑚𝑛𝑓 + 𝑀(1 − 𝑋𝑗𝑚𝑛𝑜𝑓) (∀ 𝑗, 𝑚, 𝑛, 𝑜, 𝑓) 

(8) 

For a product to be considered as finished, all units 
must be processed through all production levels. 

∑ ∑ 𝑥𝑗𝑚𝑛𝑜𝑓
𝑝

−

𝑀

𝑚=1

𝑂

𝑜=1

∑ ∑ 𝑥𝑗𝑚𝑛+1𝑜𝑓
𝑝

𝑀

𝑚=1

𝑂

𝑜=1

= 0 (∀ 𝑗, 𝑛, 𝑓) 

(9) 
For each machine 𝑚 at every level 𝑛, only one 

product 𝑗 can be considered for a single order 𝑜. 
Likewise, a product can only be processed once, that is, 
in a single order 𝑜. 

∑ 𝑋𝑗𝑚𝑛𝑜𝑓 ≤ 1

𝐽

𝑗=1

(∀ 𝑚, 𝑛, 𝑜, 𝑓) 

(10) 

Continuous decision variables cannot take 
negative values. 

𝑥𝑗𝑚𝑛𝑜𝑓
𝑝

, 𝑥𝑗𝑓𝑎
𝑡 , 𝑡𝑓

𝑗𝑚𝑛𝑓 ≥ 0 

(11) 

Binary decision variables can only take the 
values zero or one. 

𝑋𝑗𝑚𝑛𝑜𝑓 , 𝑌𝑗𝑗′𝑚𝑛𝑓 = {0,1} 

4. Case study 

To validate the mathematical model formulation a 
small instance of the problem was created and solved in 
Lingo 19.0 software. This instance was specifically 
developed to challenge the entire formulation. To do so, 
the previously described ice cream factory case is 
extended. 

The parameters were designed to find a solution for 
a factory with limited capacity, hence, the model 
obtained a solution that fulfilled the time constraints 
by manufacturing the entire demand at a minimum 
cost.  

In order to simplify case of study, we will consider 
a single factory and warehouse supply chain. In this 
factory, one-liter chocolate and vanilla flavored ice 
cream are produced and transported to the central 
warehouse. The ice cream manufacturing process is 
exemplified in two processes: the first stage or 
production level, represents the mixing and freezing, 
and in the second level the ice cream is packaged. One 
machine per level is considered, therefore, both flavors 
of ice cream must be processed in these two machines. 
Given this problem statement, the sets are defined 
below: 

 Products: J={1,2} (1 = chocolate 2 = vanilla)  

 Machines: M={1} (Although there are two 
machines, there is actually only one machine) 

 Production level: N={1,2} (1 = mixing and 
freezing,2 = packaging) 

 Production order: O={1,2} (consecutive 
processing order per machine) 

 Factories: F={1} (single factory) 

 Warehouses: A={1} (single and central 
warehouse) 

The model parameters state as follows, a week of 
production with 150 available hours are considered for 
each machine and there is a demand for 95 liters of 
chocolate and 90 liters of vanilla. The unit production 
costs are 6 and 5 monetary units (M.U.), respectively; 
Additionally, the cost of transportation from the plant 
to the warehouse is 3 M.U. per liter. Also, the mixing and 
freezing processing times are 15 minutes for the 
chocolate flavor and 1 hour for vanilla; and for the 
packaging process the process time is 1 hour for 
chocolate and 15 minutes vanilla.  

In addition, due to the food coloring, the cleaning 
time in the mixing and freezing line is 10 hours if it the 
change is made from chocolate to vanilla, but if it is 
done from vanilla to chocolate, only 5 hours are needed 
since it is easier to clean the coloring found in vanilla 
ice cream. On the other hand, due to the frozen product 
consistency, on the packaging line the cleaning times 
considered are 2 hours from chocolate to vanilla and 3 
hours otherwise.  
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Since the number of constraints increases 
combinatorically, with the sets defined, a total of 55 
constraints, 16 binary variables and 30 total variables 
were obtained. The problem was solved with the Lingo 
19.0 optimizer. The solution was obtained in 0.1 
seconds after 65 iterations, in a computer with 16 GB 
RAM memory and Intel® Core™ i7 processor. 

5. Results and Discussion 

5.1. Model verification: Extreme conditions test 

The verification stage looks for the model to be 
conceptually correct. To do so, the conceptual model is 
established first, which it can be seen in Figure 1, The 
central box represents the main internal factors and 
dependencies that affect the output of the model, such 
as the parameters, objective function, and constraints. 
This central box is impacted by the external factors on 
the left box, the most relevant being the demand which 
is influenced by the market. Finally, the right box 
contains the expected results obtained by the model, in 
this case, the expected results is the total landed cost, 
production scheduling and routing. 

 

Figure 1. Conceptual model for the proposed formulation 

The conceptual model delimits the formulation 
scope and creates the baseline to start a simulation 
study. For this work, the simulation is not expanded, 
yet the conceptual model creates the opportunity to 
analyze the dependencies amongst model elements to 
establish the verification process of the model 
formulation. 

To verify the model, the extreme conditions test 
was developed. This test consists in taking one or more 
parameters of the model and change their values to 
extreme conditions, that is, give the parameter a 
minimum value (zero) as well as a maximum value 
(infinity).  

Then, in the general verification the objective 
function is evaluated to verify if the obtained value is an 
expected result. If a drill down in the particularities of 
the model, such as restrictions, is needed; the partial 
verification takes place by going one step deeper in the 
model dependencies. In both verifications the objective 
is to understand if there are atypical behaviors that do 
not make sense, so that a correction in the model is 
made.  

The selected parameters to perform the extreme 
conditions test are production costs, demand, and 
processing times. These variables will tend to a 
maximum value of infinity and to a minimum value of 
zero. The results can be seen in Table 1. Extreme 
conditions test results. 

 Table 1. Extreme conditions test results. 

Parameter 
Extreme 
condition 
value 

Objective 
function 
value 

Comments 

𝑐𝑗𝑓
𝑝  ∞ ∞ The cost maximizes 

𝑐𝑗𝑓
𝑝  0 0 Only transportation 

component remains in cost 

𝐷𝑗𝑎 ∞ Unfeasible 

Completion times tend to 
infinity when they should be 
lower or equal than machine 
available hours 

𝐷𝑗𝑎 0 0 

Nothing happens and the 
model in interrupted, in a 
partial manner, the 
production queues are empty, 
and the machines are idle 

𝑡𝑗𝑚𝑛𝑓
𝑝  ∞ Unfeasible 

Completion times tend to 
infinity when they should be 
lower or equal than machine 
available hours 

𝑡𝑗𝑚𝑛𝑓
𝑝  0 Bound 

A cost bound is obtained but 
the model leaves the initial 
designed scope and 
functionality 

Having successfully done the extreme conditions 
test, the first five cases show predictable and coherent 
behavior. It is only in the last case, when the processing 
times tend to zero, that the verification phase does not 
gives us enough information, thus, the validation is the 
next step in the modelling process. 

5.2. Model validation: Case study results  

The model validation is done through the resolution of 
the case study mentioned previously. The optimal 
solution’s objective function returns the value of the 
sum of the costs which adds to 1,575 M.U. For this 
instance, since there is only a single production and 
transportation cost by product and no back orders are 
allowed, if a feasible solution is obtained it will be 
optimal under the parameters described. To obtain a 
feasible solution, each constraint must be satisfied, the 
first constraint seen in equation (2) guarantees that the 
demand is fulfilled, values in Table 2 prove this. 

Table 2. Solution for production units variables 𝑥𝑗𝑚𝑛𝑜𝑓
𝑝 .  

j m n o f Value 

1 1 1 1 1 95 
2 1 1 1 1 0 
1 1 1 2 1 0 
2 1 1 2 1 90 
1 1 2 1 1 95 
2 1 2 1 1 0 
1 1 2 2 1 0 
2 1 2 2 1 90 

The prosed formulation pretends that by having 
different manufacturing costs through 𝐹 factories, as 
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well as numerous transportation cost depending on the 
combination between destinations, an optimal supply 
chain plan is obtained which chooses the optimal 
location to manufacture each product, in addition to 
routing. Nevertheless, although the objective function 
does not consider completion time minimization, in 
order to be able to manufacture the entire demand, the 
obtained solution naturally minimized the completion 
time due to the limited available hours capacity for the 
proposed factory. 

Moreover, the obtained optimal solution 
contemplates starting to produce product 1 (chocolate) 
before product 2 (vanilla) as seen in Table 2. Each 
product follows the production flow so that the same 
units that are processed in level 𝑛 = 1 are also processed 
in level 𝑛 = 2. Then notice that for each level a single 
order is assigned to a product. These results comply 
with the constraint declared in equation (9). 

As declared in equation (3), all manufactured 
products are transported to the central warehouse 𝑎 =
1, this can be seen in Table 3.  

Table 3. Solution for transportation units variables 𝑥𝑗𝑓𝑎
𝑡 .  

j f a Value 

1 1 1 95 
2 1 1 90 

In Table 4, the value obtained for completion times 
are lower or equal than the 150 available hours that each 
machine has, complying with equation (4). Although 
the cleaning time is more extensive when starting to 
manufacture product 1 (chocolate) than when 
producing product 2 (vanilla) first; the optimal and 
only feasible solution is found when the total 
production time is minimized, this occurs by the flow 
shop scheduling modelling approach because of the 
shorter unit production time of product 1 at level 1. 

Table 4. Solution for completion times variables 𝑡𝑓
𝑗𝑚𝑛𝑓.  

j m n f Value 

1 1 1 1 23.75 
2 1 1 1 125.5 
1 1 2 1 125.5 
2 1 2 1 150.0 

Furthermore, values described for the production 
binary variables in Table 5 describe that no production 
order is repeated for more than 1 product for each level, 
therefore, this guarantees that equation (10) is 
satisfied.  

Table 5. Solution for production binary variables 𝑋𝑗𝑚𝑛𝑜𝑓.  

j m n o f Value 

1 1 1 1 1 1 
2 1 1 1 1 0 
1 1 1 2 1 0 
2 1 1 2 1 1 
1 1 2 1 1 1 
2 1 2 1 1 0 
1 1 2 2 1 0 
2 1 2 2 1 1 

Finally, the relationships established in equations 
(5), (6), (7) and (8) between decision variables 
mentioned previously in addition with values from 
Table 6 guarantee that the combinations for those 
constraints groups fulfill the flow-shop scheduling 
approach.  

Table 6. Solution for production binary variables 𝑌𝑗𝑗′𝑚𝑛𝑓.  

j j' m n f Value 

1 1 1 1 1 0 
1 2 1 1 1 1 
2 1 1 1 1 0 
2 2 1 1 1 0 
1 1 1 2 1 0 
1 2 1 2 1 1 
2 1 1 2 1 0 
2 2 1 2 1 0 

In conclusion, the case study validates that the 
formulation correctly abstracts the reality, that is, the 
values obtained by the software are logical and 
correspond to what should be obtained in an analytical 
practice. In consequence, with the extreme conditions 
test in addition to the ice cream factory case study, the 
optimization model proposed for the production-
routing problem is both verified and validated.  Also, 
the formulation solves the manufacturing sequencing 
with a flow-shop scheduling approach. 

6. Conclusions 

This paper successfully proposes a novel 
formulation to minimize the total landed cost for a 
supply chain with flow shop scheduling based on units 
with setups explained by a for-to behavior.  

The case study validates the presented formulation, 
nevertheless, the proposed model rapidly increases in 
magnitude, therefore, the solving method must be 
addressed with other techniques or mathematical tools 
such as heuristics or metaheuristics to face more 
complex problems moving forward. 

Notably, this first approach gives more importance 
to manufacturing than the transportation phase in a 
supply chain, for future work the objective is to also 
prioritize distribution formulation to have a fully 
detailed production-routing problem. 

Finally, the next logical step for the proposed 
mathematical model is to migrate towards a simulation 
solution from the conceptual model mentioned to solve 
the manufacturing scheduling and distribution routing 
of a supply chain, this will help to address the problem 
in a more dynamic way enabling us to control time 
within the simulation. 
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