
© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the CreativeCommons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Model Verification in Graph Databases and its Application
in Neo4j
Christoph Praschl1,*, Andreas Pointner1, Oliver Krauss1, Emmanuel Helm1 andAndreas Schuler1
1University of Applied Sciences Upper Austria, Hagenberg i. M., Austria
*Corresponding author. Email address: christoph.praschl@fh-hagenberg.at

Abstract
This work introduces a concept for rule based model verification using a graph database on the example of Neo4j and its query languageCypher. An approach is provided that allows to define verification rules using a graph query language to detect transformation errorswithin a given domain model. The approach is presented based on a running example, showing its capability of detecting randomlygenerated errors in a transformation process. Additionally, the method’s performance is evaluated using multiple subsets of the IMDbmovie data with a maximum of 17,000,000 nodes and 41,000,000 relationships. This performance evaluation is carried out incomparison to the Object Constraint Language, showing advantages in the context of highly connected datasets with a high number ofnodes. Another benefit is the utilization of a well established graph database as verification tool without any need for re-implementinggraph and pattern matching logic.
Keywords: Model Verification; Graph-based Modeling; Neo4j; Cypher

1. Introduction

In this work, an approach is presented that allows the ver-ification of model transformations using graph databases,enabling efficient verifications. If an application alreadyuses a graph database for persisting the data, the presentedapproach also has the advantage that no additional toolingis required for the verification, since the required verifica-tion mechanisms are already available in the database.
Model transformations are widely used in the contextof software development to adapt a given model to a par-ticular use case. One example for such transformationsis the automatic code generation from UML diagrams asdiscussed by Sunitha and Samuel (2019), where a chartmodel is transformed to an abstract syntax tree model. Toensure the correctness of transformations, the resultingmodels have to be verified. For this task, this work intro-duces a verification approach based on graph databases.

Models abstract parts of the real world using only rel-evant properties. They are used in different aspects andstages in the process of software development – begin-ning with class diagrams using UML, to domain models ordatabase models. In model driven development (c.f. Atkin-son and Kuhne (2003)), models play a central role in creat-ing software, by using models as a basis for creating code.For example, UML class models can be used for automati-cally creating the domain classes of a system for differentor multiple programming languages.
In different stages of the development process, as wellas in dissimilar parts of the actual system, it is commonto have various models describing the same aspect frommultiple perspectives. To transform from one model to an-other, several model transformation techniques are used.The correctness of the target model in reference to thesource model has to be ensured. The challenge is to ver-

2724-0029 © 2022 The Authors.doi: 10.46354/i3m.2022.emss.020

Proceedings of the 33rd European Modeling & Simulation Symposium (EMSS), 02018th International Multidisciplinary Modeling & Simulation Multiconference

https://creativecommons.org/licenses/by-nc-nd/4.0/.

ify if the information of the source model is transformedcorrectly into the target model and no information is lost.This is crucial since developers must be able to rely on thecorrect semantic information to transfer from one modelto another as described by Lano et al. (2012a). Examples ofverifications in the context of a model to model transfor-mation like UML to relational database transformationsare given by Lano et al. (2012b).This work introduces an approach for model verifi-cation using a database and a query language for thedefinition of verification rules. The utilization of agraph database (GBD) is proposed instead of a relationaldatabase to overcome the problem of the object–relationalimpedance mismatch as described by Ireland et al. (2009).The presented approach is used to ensure the correct-ness of a transformation by analyzing the target model,or by comparing the source and the associated target in-stances. The general usage of the verification approach isshown based on a running example. The performance isevaluated based on a case study using the IMDb dataset(c.f. IMDb.com, Inc (2022)) and is compared to the state-of-the-art model verification framework the Object Con-straint Language (OCL) introduced by OMG (2006).This work aims to answer the following research ques-tions:
• RQ1: How can model transformations be verified in graph

databases?It is examined if errors in a result model stemming froma faulty model transformation process can be detectedusing a GBD in combination with a query language.• RQ2: How does a graph database based verification per-
form and scale?The performance of a verification process can be a cru-cial point depending on the use case. In certain circum-stances, a verification is needed in a short amount oftime. Since a model instance can consist of millions ofobjects depending on the use case, the scaling of theapproach can be another crucial factor besides the per-formance of the verification approach.

In context of the stated questions, this work makes thefollowing contributions:
• A novel model verification approach using a GBD• A case study evaluating the approach’s performance• A comparison between the presented approach and OCL

2. Approach

The verification approach is described based on the graphdatabase Neo4j in combination with the graph query lan-guage Cypher. The query language is used to define veri-fication rules, which are applied to the model. If all rulesare fulfilled, the verification process is rated as successful.The architecture for a verification service as well as userdefined functions in the context of model verification arepresented.

2.1. Verification framework

The core concept of the presented graph database verifi-cation approach is to persist the specific models in a firststep and to define verification rules using a query languagewhich are evaluated on the models in a second step.
To be able to create a verification framework provid-ing this functionality, it is necessary to encapsulate theCypher queries, that should be executed. The presentedarchitecture distinguishes between two types of queries.On the one hand queries which return a single value result,e.g. for the result of counting specific nodes or booleanevaluations, and on the other hand queries which returna list of results. For this reason, the architecture differ-entiates between TypedQuery and MultiResultTypedQuery– both used as wrapper for the actual Cypher query. The

MultiResultTypedQuery class is derived from TypedQuery,since the only difference is the result type as list of entries.This architecture is shown in Figure 1.

Use

Extends

Use

Use

TypedQuery<C>

+ query: String

+ verifier: Verifier<C>

+ resultType: Class<C>

+ isSingleResultQuery : bool

Verifier<T>

+ verify(T): boolean

DualVerifier<T, S>

+ verify(T, S): boolean

DualTypedQuery<T, S>

+ query1: TypedQuery<T>

+ query2: TypedQuery<S>

+ verifier: DualVerifier<T,S>

MultiResultTyped-
Query<C>

Figure 1. Architecture for a query based verification framework. TypedQueryrepresents one verification query, which wraps the native Cypher query,its expected result type and an associated Verifier. The verifier is used toevaluate the query’s result and for this represents the actual verificationprocess. The MultiResultTypedQuery is an extension of the TypedQuery andrepresents a query with a collection of result values. The DualTypedQuerywraps two TypedQuery objects and compares their result for the verification.

Neo4j provides the possibility of returning results withdynamic data types. This is left out for the verification,since it requires an additional parsing process with stat-ically typed languages such as Java. In addition to theactual Cypher query, both query wrappers (TypedQuery,
MultiResultTypedQuery) contain a verifier, which evalu-ates the query result. A verifier takes the result and re-turns a boolean value, which signals if the result is correct.An appropriate verifier must be used depending on whatshould be verified with the specific query. In the simplestform, the query itself already returns a boolean value, rep-resenting if the verification holds or not. In such cases,the verifier only forwards the query result. Additionally,a verifier can be implemented for equality checks of theresult with a value comparison.

33rd European Modeling & Simulation Symposium, EMSS 2022

Praschl et al.

Based on the concept of single result and multi re-sult queries, another concept called DualTypedQuery is in-troduced. While TypedQuery and MultiResultTypedQuerycan have any result which is evaluated independently,the idea of the DualTypedQuery wrapper is to execute twoqueries and to compare their results. For this reason, a
DualTypedQuery consists of two TypedQuery instances anda DualVerifier which is responsible for the result compar-ison (shown in Figure 1). Such a DualVerifier can be usedif the verification should be done by comparing the sourceand the target model, instead of only analyzing the target.
2.2. User-defined APOC procedures

One crucial functionality for verifications using graphsis the possibility of comparing the equality of two nodes.Neo4j only provides the possibility for id-based equalitychecking or alternatively manually comparing a node viaproperty based match clauses in a Cypher query. To en-hance the equality mechanism of Neo4j, additional user-defined procedures can be created using Neo4j’s APOCframework as described by Neo4j, Inc. (2021). For thisreason, this work introduces a user defined procedurecalled equals(). This method expects two nodes A and
B, as well as two lists LA and LB, each containing n prop-erty names for the associated node. These property listsare used for the actual equality checking. With this pur-pose, the position of each element in the first list must beequal to the position of the corresponding property in thesecond list. This is defined by a function f : A(LA(i)) ≡
B(LB(i)) | i = [0, n). The implementation of this equalitycheck is shown in Algorithm 1 in the form of a user definedprocedure for the Neo4j graph database. Since APOC is aframework based on the turing-complete programminglanguage Java, it can be used to extend the verificationmechanism in any way.
3. Evaluation

The evaluation is done in two ways. On the one hand,a functional evaluation and on the other hand, a perfor-mance comparison is carried out. The functional evalu-ation is done using a running example, while the perfor-mance measurement is done in comparison to OCL usingthe public IMDb dataset. Both analyses are based on theNeo4j Community Edition 4.3.6 with the APOC extension4.3.0.4. In addition to that, Eclipse’s OCL implementationin the version 3.10 is used. All tests are executed using anAMD Ryzen 9 3900 X 12-Core processor with 64 GB RAM.
3.1. Functional Evaluation

The functional evaluation is based on mutation testing asdescribed by DeMillo et al. (1978), which can be applied inmodel transformation as stated in Mottu et al. (2006) andGuerra et al. (2019). In this example, n three-dimensionalpolygons are randomly created, where each polygon con-

Algorithm 1: User defined function for comparingtwo nodes based on given property lists.
Data: n1, n2: Nodes to be compared;p1, p2: Property names of associated nodes;
Result: Boolean value that represents given nodesare equal based on their properties.

1 @UserFunction("nodeEquals")
2 public boolean equals(
3 @Name("n1") Node n1, @Name("n2") Node n2,
4 @Name("p1") List<String> p1, @Name("p2")List<String> p2) {
5 if(p1.size() != p2.size()) return false;
6 return IntStream.range(0, p1.size())
7 .mapToObj(i -> Pair.of(p1.get(i),p2.get(i)))
8 .allMatch(p -> Objects.equals(
9 n1.getProperty(p.first(), null),

10 n2.getProperty(p.second(), null)
11)
12);
13 }

sists of m three-dimensional points. Every point is definedby the three coordinates x, y and z. Those polygons aretransformed to two-dimensional counterparts, by remov-ing the z-coordinate. The transformation is randomlyexecuted incorrectly, leading to different types of transfor-mation errors. As shown in Figure 2 one or multiple of thefollowing errors can occur during the transformation:
(a) Removing the transformed Polygon2D from the result(b) Deleting the resulting Point2D(c) Mixing the values of the points’ coordinates, so x′ = yand y′ = x applies for a transformation t(P(x, y, z)) =

P′(x′, y′)(d) Keeping the z-coordinate, so a Point2D still consistsof 3D information(e) Adding additional, artificial properties to a Point2D

Polygon3D

List<Point3D>

Point3D

x : double

y : double

z : double

Transformation

Polygon2D

List<Point2D>

Point2D

x : double

y : double

z : double

[A-Z] : int

1

N

1

N

a

c

d

b

e

Figure 2. The running example with three- and two-dimensional polygonsand associated points, which are randomly transformed incorrectly. Theerrors are labelled from a to e.

Algorithm 2: Query to compare the number of Poly-gon3D and Polygon2D nodes.
Result: Boolean that signals if the number ofPolygon3D and Polygon2D nodes is equal.

1 MATCH(n:Polygon3D), (x:Polygon2D)
2 WHERE (n)--(x)
3 RETURN count(n) = count(x);

Algorithm 3: Query to compare the number of cre-ated Point2D nodes with the number of the Point3Din the original polygon.
Data: $polyId: Id of the Polygon3D to check
Result: Boolean that signals if the number of pointsis equal in the polygons.

1 MATCH(n:Polygon3D)-->(p3:Point3D)
2 WHERE id(n)=$polyId
3 OPTIONAL MATCH(n)--(:Polygon2D)--(p2:Point2D)
4 RETURN COUNT(DISTINCT(p2)) =COUNT(DISTINCT(p3));

Algorithm 4: Query to compare all points of thecreated Polygon2D with the source points in its 3D-counterpart.
Data: $pointId: Id of the Point3D
Result: Boolean that signals if the number of pointsis equal in the polygons.

1 MATCH (poly3d:Polygon3D),
2 (poly2d:Polygon2D),
3 (p3:Point3D), (p2:Point2D)
4 WHERE (p3)--(poly3d)--(poly2d)--(p2)
5 AND id(p3) = $pointId
6 AND nodeEquals(p2, p3, [“x”, “y”])
7 AND size(keys(p2)) = size(keys(p3)) - 1
8 RETURN p2 IS NOT NULL;

To validate the functionality of the proposed framework,the randomly created errors should be detected with suit-able verification rules. For this task, the mentioned trans-formation process logs which transformed elements con-tain an error, and the type of error that was introduced.This information is not used by the verification and is alsonot stored in the database. It is only used as ground truthto evaluate the correctness of the verification process.
Based on the presented running example, the follow-ing Cypher queries are used as verification rules to de-tect the mentioned errors: The first statement shown inAlgorithm 2 checks if a Polygon2D was created for everythree-dimensional entity. The second statement shownin Algorithm 3 is executed once for every Polygon3D. It se-lects the polygon with the given id and tries to match the

corresponding Polygon2D. Then it compares the numberof points of both associated polygons. The third and mostsophisticated statement shown in Algorithm 4 iteratesover every Point3D for a given Polygon3D from the sourcemodel and checks if there is a matching Point2D in the cor-responding Polygon2D regarding the point’s x and y prop-erties. This query also checks if a Point2D has exactly oneproperty less than its corresponding Point3D (two insteadof three), due to the missing z-coordinate.The presented verification framework executes allthose queries once per model (first query), per polygon(second query) and respectively per point (third query) ina polygon. If all queries result in a positive result (true) themodel is valid and the transformation is correct, otherwisea faulty transformation is detected.
3.2. Performance Evaluation

In terms of evaluating the performance of the proposedapproach, a case study is carried out. This study isbased on parts of IMDb’s dataset namely the person data(name.basics), the movie data (title.basics) and the associ-ations between movies and persons (title.principals). Thestructure of the used data is shown in Figure 3. This dataset is imported into an empty Neo4j graph database usingan open-source Java-based importer published by Point-ner and Praschl (2020). For the OCL based comparison,the same data is also imported into an Ecore model us-ing another open-source implementation published byPraschl and Pointner (2021). After the import processboth models consist of 10,647,967 entries, which are com-posed of 4,152,840 persons and 6,495,127 movies, and41,108,868 relationships between the two entities for thecomplete data set. In addition to this complete version,six smaller subsets are created, that enable to evaluate theperformance of the approach. This is done by selectingand persisting a limited number of n relationships with
n ∈ {2500; 40000; 160000; 625000; 2500000; 10000000}and the associated nodes. The evaluation is executed using50 warm up runs, as well as 50 execution runs with a timelimit of one hour per run based on the Neo4j and the OCLapproach.Based on these subsets, multiple queries, respectivelyconstraints, are executed to ensure the model’s integritywith different complex requirements for the model. Thesequeries can be separated into two groups of verificationrules:
1. Queries that only require knowledge of individual enti-ties.2. Queries that also require knowledge of associated enti-ties based on existing relationships.

Regarding the first group, an initial query is used tocheck if every person has an attribute called name (cf. Algo-rithm 5 and Algorithm 6). The second query of this groupis used to ensure the uniqueness of an actor’s id prop-erty(cf. Algorithm 11 and Algorithm 12). As mentioned,

 33rd European Modeling & Simulation Symposium, EMSS 2022

Praschl et al.

Algorithm 5: Neo4j query 1 used as verification rulefor checking if every person has an attribute calledname.
Result: True if all person nodes have the attributename, else False.

1 MATCH (n:Person) WHERE n.name IS NULLRETURN COUNT(n) = 0;

Algorithm 6: OCL query 1 used as verification rulefor checking if every person has an attribute calledname.
Result: True if all person nodes have the attributename, else False.

1 context Root inv: self.persons→forAll(a | a.name <>null)

these queries differ from the remaining two, as they onlyrequire knowledge of the individual entities, without in-cluding any relationships to other entities. The secondgroup in turn consists of two queries. One query that isused to check if every person is related to at least one movie(cf. Algorithm 7 and Algorithm 8) and another query thatis used to verify, that every actor (person with “actor” inthe primaryProfession list property) is also associated asactor (relationship “part_of” with the value “actor” inthe category property) with at least one movie (cf. Algo-rithm 9 and Algorithm 10). Every verification rule is exe-cuted using the Neo4j based approach as well as OCL andthe specific results are juxtaposed.

1 N

1

N

Person

+ id : String

+ name : String

+ primaryProfession : List<String>

+ birthYear: LocalDateTime

+ deathYear: LocalDateTime

Movie

+ id : String

+ primaryTitle: String

+ orginalTitle: String

+ type: String

+ isAdult: boolean

+ runtime: long

...Part_of

+ category : String

+ job : String

+ characters : List<String>

Figure 3. Class diagram of the used IMDb dataset showing the informationfor a Person, a Movie and the association “part_of” between those entities.

Algorithm 7: Neo4j query 2 used as verificationrule for checking if every person is related with atleast one movie.
Result: True if all person nodes that are of arelationship, else False.

1 MATCH (p:Person) WHERE NOT(p)-[:part_of]-(:Movie)
2 RETURN COUNT(p) = 0;

Algorithm 8: OCL query 2 used as verification rulefor checking if every person is related with at leastone movie.
Result: True if all person nodes that are of arelationship, else False.

1 context Root inv: self.persons→
2 forAll(a | self.partOf→any(aIm | a = aIm.id) <>null)

Algorithm 9: Neo4j query 3 used as verificationrule for checking if every actor is related with atleast one movie as actor.
Result: True if all person nodes with theprimaryProfession actor are also part of arelationship with the category actor, elseFalse.

1 MATCH (p: Person) WHERE "actor" INp.primaryProfession
2 AND NOT (p)-[:part_of {category:"actor"}]-(:Movie)
3 RETURN COUNT(p) = 0;

Algorithm 10: OCL query 3 used as verification rulefor checking if every actor is related with at leastone movie as actor.
Result: True if all person nodes with theprimaryProfession actor are also part of arelationship with the category actor, elseFalse.

1 context Root inv: self.persons→
2 select(a |a.primaryProfession→includes(’actor’))→
3 forAll(a | self.partOf→
4 any(aIm | a = aIm.id and aIm.category =’actor’) <> null
5)

Algorithm 11: Neo4j query 4 used as verificationrule for checking if every actor’s id is unique.
Result: True if all values of the property id of theperson nodes are unique, else False.

1 MATCH(x:Person) RETURNCOUNT(DISTINCT(x.id)) = COUNT(x);

Algorithm 12: OCL query 4 used as verification rulefor checking if every actor’s id is unique.
Result: True if all values of the property id of theperson nodes are unique, else False.

1 context Root inv: self.persons→isUnique(a | a.id)

4. Results

This section lists the results of the functional as well asthe performance comparison. The functional compari-son is carried using the presented verification approachon a running example with a transformation from three-dimensional to two-dimensional polygons on the onehand. On the other hand, the performance evaluation isdone based on verifications for the IMDb data set, whichare compared to the state-of-the-art framework OCL.
4.1. Functional Results

Multiple experiments are tested for the polygon-basedrunning example using a different number of nodes thatare transformed during the process and evaluated usingthe presented Cypher queries. Table 1 shows the number ofcorrectly and incorrectly created polygons/points (groundtruth) and the detected invalid nodes in the specific run.The table shows that all incorrectly transformed nodes aredetected using the presented approach. The running ex-ample shows, that the presented verification approach iscapable of detecting errors due to a model transformation.Based on the results of this experiment the RQ. 1 “How canmodel transformations be verified in graph databases?” isanswered. The experiment shows successfully the utiliza-tion of the presented approach in the context of a modelverification process using Neo4j, Cypher and APOC for thegiven example.
4.2. Performance Results

In context of the RQ.2 “How does a graph database basedverification perform and scale?”, the results of the per-formance evaluation are listed in Table 2 and show thatthe present approach outperforms the Eclipse’s OCL im-plementation in the most cases, based on the mean runtime and the standard deviation per query and subset. Thementioned time limit is clearly exceeded by the secondOCL query, starting with the data set containing 625,000relationships. For this reason, this run is incomplete, with

Table 1. Verification results of multiple experiments for the presentedrunning example, showing that all incorrectly transformed polygons andpoints are detected by the presented framework
Number oftransformed polygons Number oftransformed points Number ofdetected faults

Correct Incorrect Correct Incorrect FaultyPolygons FaultyPoints1 2 0 58 2 0 22 4 1 242 8 1 83 7 3 346 154 3 1544 3 0 750 0 0 05 16 4 907 93 4 936 3 2 119 51 2 517 36 4 1895 105 4 1058 39 11 2289 211 11 211

only two execution runs at all. Furthermore, the remain-ing subsets are not executed. Next to Table 2, the Figures4 to 7 compare the two approaches per query within a log-arithmic scale. The first and fourth query in combinationwith the first two subsets with 2,500 and 40,000 relation-ships are the only examples in the evaluation, where OCLoutperforms Neo4j. In all other situations, the Neo4j basedapproach is faster. Especially, queries not only consideringindividual entities but also relationships show the perfor-mance advantages of the graph based approach. This isalso highlighted in Figure 5 with a linear runtime com-plexity O(n) using Neo4j and a quadratic complexity O(n2)using OCL for the second query.

1000 52 10k 52 100k 52 1M 52 10M 52

1

2

5

10

2

5

100

2

5

1000

2

5

Neo4J

OCL

Number of Relationships

R
u

n
ti

m
e

 (
m

s
)

Figure 4. Run time comparison between Neo4j and OCL for the first query,that checks if every person in the model has an attribute called name.

1000 52 10k 52 100k 52 1M 52 10M 52

1

10

100

1000

10k

100k

1M

10M
Neo4J

OCL

Number of Relationships

R
u

n
ti

m
e

 (
m

s
)

Figure 5. Run time comparison between Neo4j and OCL for the secondquery, that checks if every person is part of at least one relationship. Sincethe execution of the OCL version exceeds the time limit of one hour, it isnot applied onto all data sets.

 33rd European Modeling & Simulation Symposium, EMSS 2022

Praschl et al.

Ta
bl

e
2.

Run
tim

eco
mp

aris
on(

inm
s)o

fth
equ

erie
sus

ing
Neo

4ja
ndO

CLf
orv

ario
usn

um
ber

ofr
elat

ion
ship

int
heu

sed
IMD

bda
tas

ubs
et.T

hes
pee

dup
sect

ion
sho

ws
the

scal
ing

fact
orb

etw
een

the
me

anv
alue

sfo
rev

ery
que

ryw
ith

OCL
com

par
edt

oN
eo4

j(sp
ee

du
p

=O
CL

M
ea

n/N
eo

4j M
ea

n).D
uet

oth
eru

ntim
eof

5.93
hou

rsin
ave

rag
efo

rth
ese

con
dO

CLq
uer

yw
ith

625
,00

0re
lati

ons
hip

s(*
),th

e
setu

pis
can

cele
daf

ter
two

run
san

dbe
cau

seo
fth

iss
itua

tion
itis

not
exe

cut
edf

ort
her

em
ain

ing
sub

sets
.

2,50
0

40,
000

160
,00

0
625

,00
0

2,50
0,0

00
10,0

00,
000

41,1
08,

868
Me

an
StD

ev
Me

an
StD

ev
Mea

n
StD

ev
Me

an
StD

ev
Me

an
StD

ev
Me

an
StD

ev
Me

an
StD

ev
Que

ry1
Neo

4j
2.63

0.45
5.48

0.51
11.4

9
1.11

45.7
3

1.12
196

.95
1.92

459
.40

1.44
1,24

7.89
1.96

OCL
1.26

0.26
5.01

0.57
19.6

6
0.10

79.0
7

0.35
380

.56
29.5

2
940

.11
72.5

5
2,8

94.1
4

134
.34

Spe
edu

p
0.48

0.91
1.71

1.73
1.93

2.05
2.32

Que
ry2

Neo
4j

2.15
0.25

7.89
1.13

22.0
9

1.84
95.1

8
1.32

433
.80

3.66
1,12

4.59
4.18

3,62
6.21

11.7
4

OCL
261

.30
9.56

65,7
51.8

0
446

.24
977

,367
.68

17,1
15.7

1
21,3

73,3
79.7

6*
5,77

0.55
*

-
-

-
-

-
-

Spe
edu

p
121.

53
8,33

3.56
44,

244
.8

224
,557

.47*
-

-
-

Que
ry3

Neo
4j

2.26
0.15

13.3
1

1.12
39.7

1
1.70

176
.84

1.40
760

.55
5.78

2,0
99.2

0
4.77

6,4
60.7

5
11.6

8
OCL

25.9
2

0.77
98.2

6
5.84

2,0
72.0

2
50.7

0
1,48

7.39
84.9

6
7,89

2.92
121.

95
27,2

24.9
1

200
.91

102
,376

.40
525

.31
Spe

edu
p

11.4
7

7.38
52.1

8
8.41

10.3
8

12.9
7

15.8
5

Que
ry4

Neo
4j

2.82
0.42

6.61
0.42

16.8
1

1.17
63.3

6
2.50

303
.06

47.6
9

734
.96

72.0
5

2,33
1.53

79.7
0

OCL
1.05

0.19
5.16

0.30
18.7

9
1.33

73.4
4

16.5
6

357
.78

51.8
5

811.
50

69.0
0

2,72
2.12

198
.22

Spe
edu

p
0.37

0.75
1.12

1.16
1.18

1.10
1.17

1000 52 10k 52 100k 52 1M 52 10M 52
1
2

5

10
2

5

100
2

5

1000
2

5

10k
2

5

100k
2

Neo4J

OCL

Number of Relationships

R
u

n
ti

m
e

 (
m

s
)

Figure 6. Run time comparison between Neo4j and OCL for the thirdquery, that checks if every person that has the value actor within the
primaryProfession list, has also a relationship to at least one movie withthe relationship attribute category containing this value.

1000 52 10k 52 100k 52 1M 52 10M 52

1

2

5

10

2

5

100

2

5

1000

2

5

Neo4J

OCL

Number of Relationships

R
u

n
ti

m
e

 (
m

s
)

Figure 7. Run time comparison between Neo4j and OCL for the fourthquery, that checks if every person has a unique id.

5. Related Work

An approach for model verification is presented by Guerraet al. (2012). This verification is performed by specify-ing visual contracts and compiling them into QVT, whichis introduced by OMG (2007), to detect disconformitiesof transformation results. In contrast to their work, thepresented approach is working directly on the databaselevel, using the corresponding query language to createthe verification.Ko et al. (2013) present a verification concept usingproperty matching based transformation and graph com-parison algorithms. To achieve this, the authors rely onmeta-information and compare associated properties inthe source as well as target model using similarity mea-surements. Compared to the presented work, this verifica-tion approach is based on property matching. In contrast,the approach presented in this work does not use similar-ity measurements, but compares the model properties.Selim et al. (2013) describe the concept of verifyinggraph-based model transformations based on properties.The introduced property provers are used in the contextof the DSLTrans (c.f. Barroca et al. (2011)) transforma-tion language to check the source and the target modelbased on constraints. Hence, a constraint results in true or
false, depending on whether it is fulfilled by the respectivemodel or not. The idea of these constraints are comparable

to the verification rules described in this work. The majordifference is the field of application, since the approachpresented in this work uses a graph database instead ofDSLTrans and for this reason benefits from query opti-mizations of a database.OCL from OMG (2006) is widely used for the verifica-tion of models, for example defined using the Meta-ObjectFacility (MOF) language as defined by OMG (2016). In thiscontext, Cariou et al. (2010) characterize a method usingOCL transformation contracts to verify the result’s correct-ness of a transformation process. Burgueno et al. Burguenoet al. (2013) present a tool for the specification and verifi-cation of models. The second of the two mentioned publi-cations is in turn based on OCL constraints. In addition tothat also Gogolla and Vallecillo (2011) describe a method fortransformation contracts using the constraint languageOCL. In contrast to the methods using OCL, the presentedapproach in this work does not require an explicitly de-fined model for the verification, because it only relies im-plicitly on the database’s graph meta model.
6. Conclusion
This work contributes, a novel approach that enables ver-ification on a graph-based structure. The approach usesthe graph database Neo4j and allows creating verificationrules using the Cypher query language. Based on a runningexample, where 3D polygons are transformed into 2D poly-gons, the validity of the verification approach is examinedand allows answering RQ1: “How can model transforma-
tions be verified in graph databases?”. Furthermore, to alsoaddress RQ2: “How does a graph database based verifica-
tion perform and scale?”, the performance of the presentedapproach is evaluated based on the IMDb dataset in com-parison to OCL. Both evaluations show that the approachis capable of verifying models using Neo4j and Cypher.The performance evaluation shows the advantages of agraph based verification approach, especially for highly-connected data sets with a high amount of entries, com-pared to the classic approach using OCL. Additionally, thefunctional as well as the performance evaluation provideexamples on how to define verification rules within thepresented approach.In the future, it is planned to evaluate different rulepatterns to show best practices for using the presentedapproach. Furthermore, a query API could be developed,allowing to express the verification rules in a fluent andtype-safe way like the JPA Criteria API – specified in JSR338 chapter 6 by DeMichiel and Jungmann (2017). Thiswould lead to an enhanced and even more powerful modelverification framework.
References
Atkinson, C. and Kuhne, T. (2003). Model-driven devel-opment: a metamodeling foundation. IEEE Software,20(5):36–41.

Barroca, B., Lúcio, L., Amaral, V., Félix, R., and Sousa, V.(2011). Dsltrans: A turing incomplete transformationlanguage. In Malloy, B., Staab, S., and van den Brand, M.,editors, Software Language Engineering, pages 296–305,Berlin, Heidelberg. Springer Berlin Heidelberg.Burgueno, L., Wimmer, M., Troya Castilla, J., and Val-lecillo Moreno, A. (2013). Tractstool: Testing modeltransformations based on contracts. In MODELS-JP 2013:
Invited Talks, Demonstration Session, Poster Session, and
ACM Student Research Competition co-located with the
16th Int. Conf. on Model Driven Engineering Languages and
Systems, p 76-80. CEUR-WS.Cariou, E., Belloir, N., Barbier, F., and Djemam, N. (2010).Ocl contracts for the verification of model transforma-tions. Electronic Communications of the EASST, 24.DeMichiel, L. and Jungmann, L. (2017). Sr 338:Java™persistence api, version 2.2. https://jcp.org/
en/jsr/detail?id=338; accessed 10. May 2022.DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978). Hintson test data selection: Help for the practicing program-mer. Computer, 11(4):34–41.Gogolla, M. and Vallecillo, A. (2011). Tractable model trans-formation testing.Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A.,Retschitzegger, W., Schönböck, J., and Schwinger, W.(2012). Automated verification of model transforma-tions based on visual contracts. Automated Software
Engineering, 20(1):5–46.Guerra, E., Sánchez Cuadrado, J., and de Lara, J. (2019).Towards effective mutation testing for atl. In 2019
ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems (MODELS), pages78–88.IMDb.com, Inc (2022). Imdb datasets. https://www.imdb.
com/interfaces/. (Accessed on 12/07/2022).Ireland, C., Bowers, D., Newton, M., and Waugh, K. (2009).A classification of object-relational impedance mis-match. In 2009 First International Confernce on Advances
in Databases, Knowledge, and Data Applications, pages36–43. IEEE.Ko, J.-W., Chung, K.-Y., and Han, J.-S. (2013). Model trans-formation verification using similarity and graph com-parison algorithm. Multimedia Tools and Applications,74(20):8907–8920.Lano, K., Kolahdouz-Rahimi, S., and Clark, T. (2012a).Comparing verification techniques for model transfor-mations. In Proceedings of the Workshop on Model-Driven
Engineering, Verification and Validation, page 23–28. As-sociation for Computing Machinery.Lano, K., Kolahdouz-Rahimi, S., and Clark, T. (2012b). Ver-ification of model transformations. Dept. of Informatics,
King’s College London.Mottu, J.-M., Baudry, B., and Le Traon, Y. (2006). Muta-tion analysis testing for model transformations. In Eu-
ropean Conference on Model Driven Architecture (ECMDA
06), pages 376–390.Neo4j, Inc. (2021). Neo4j apoc library - developer guides.

 33rd European Modeling & Simulation Symposium, EMSS 2022

https://jcp.org/en/jsr/detail?id=338
https://jcp.org/en/jsr/detail?id=338
https://www.imdb.com/interfaces/
https://www.imdb.com/interfaces/

Praschl et al.

https://neo4j.com/developer/neo4j-apoc/. (Accessedon 07/12/2022).OMG (2006). Object constraint language (ocl) specifica-tion, version 2.0. https://www.omg.org/spec/OCL/2.0/;accessed 10. May 2022.OMG (2007). Meta object facility (mof) 2.0 query / view/ transformation specification. https://www.omg.org/
cgi-bin/doc?ptc/2007-07-07; accessed 10. May 2022.OMG (2016). Mof meta object facility. https://www.omg.
org/spec/MOF/; accessed 10. May 2022.

Pointner, A. and Praschl, C. (2020). Fhooeaist/neo4j-imdb:v1.0. https://zenodo.org/record/4030726.Praschl, C. and Pointner, A. (2021). Fhooeaist/imdb-ocl-verification: v1.0.0. https://zenodo.org/record/5705169.Selim, G., Lúcio, L., Cordy, J. R., and Dingel, J. (2013). Sym-bolic model transformation property prover for dsltrans.Technical report, Technical Report 2013-616, Queen’sUniversity.Sunitha, E. and Samuel, P. (2019). Automatic code genera-tion from uml state chart diagrams. IEEE Access, 7.

https://neo4j.com/developer/neo4j-apoc/
https://www.omg.org/spec/OCL/2.0/
https://www.omg.org/cgi-bin/doc?ptc/2007-07-07
https://www.omg.org/cgi-bin/doc?ptc/2007-07-07
https://www.omg.org/spec/MOF/
https://www.omg.org/spec/MOF/

	Introduction
	Approach
	Verification framework
	User-defined APOC procedures

	Evaluation
	Functional Evaluation
	Performance Evaluation

	Results
	Functional Results
	Performance Results

	Related Work
	Conclusion

