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Abstract 
Assigning gates to flights considering physical, operational, and temporal constraints is known as the Gate Assignment  Problem. 
This article proposes the novelty of coupling a commercial stand and gate allocation software with an off-the-grid optimization 
algorithm. The software provides the assignment costs, verifies constraints and restrictions of an airport, and provides an initial 
allocation solution. The gate assignment problem was solved using a genetic algorithm. To improve the robustness of the 
allocation results, delays and early arrivals are predicted using a random forest regressor, a machine learning technique and in 
turn they are considered by the optimization algorithm. Weather data and schedules were obtained from Zurich International 
Airport. Results showed that the combination of the techniques result in more efficient and robust solutions with higher degree 
of applicability than the one possible with the sole use of them independently.  
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1. Introduction 

At an airport, landing and departing aircraft must be 
assigned to a given stand. At this place, passengers 
board or deboard the aircraft using gates (which are 
coupled to a stand) and allows ground handling to 
execute different operations such as refueling, 
catering, luggage handling, and other operations.  

Not every turnaround(set of arrival and departure 
flights) can be assigned to any given stand. Aspects to 
consider when assigning a flight are the aircraft size, 
domestic or international aircraft (passport control 
and special terminals), airline preferences, interaction 
with nearby stands (might block some other stands 

due to the aircraft size), and other specific constraints 
given by the airport. Flight schedule, and turnaround 
time (time required to get the aircraft ready for the 
outbound flight) are crucial for the gate assignment 
process. As stands are coupled to gates, they will be 
used interchangeably in this paper..  

Peak hours stress the assignment as many 
turnarounds request a stand to be assigned. Because 
stands are a limited resource, it is not always possible 
to assign stands with gates attached to the terminal. 
Consequently, aircraft either wait for a stand to 
become available or the aircraft is assigned to a remote 
stand. The first is problematic as loaded aircraft wait 
on the airside of the airport with systems consuming 
energy, polluting and disrupting the passengers. The 
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latter would require transportation from the terminal 
to the remote stand, causing discomfort to passengers, 
crew, and ground handlers as the latter should travel 
long distances to service an aircraft. Resource 
availability shortages might worsen the problem as it 
is expected that aircraft movements will increase by 
4.3% annually from 2015 until 2035 (ICAO, 2021). 

Every day, airports assign stands to turnarounds 
considering constraints and aiming for maximizing 
the services, benefits, and capacity. This problem is 
known as the gate assignment problem and can be 
classified as a combinatory problem. The best 
combination is the one that provides the lowest cost 
while fulfilling all the constraints.  

Even when airlines can solve this problem 
beforehand, daily operational issues at the airport, at 
the remote origin/destination airport, or weather 
conditions make flights arrive/depart late or 
sometimes earlier than expected. This disrupts the 
planned gate assignment. It is desirable to estimate 
these delays to make the gate assignment more robust. 
This also has an economical cost as in 2019, in the 
United States only, delays represented 33 billion USD 
(FAA, 2020). 

The Airport Research Center (ARC) developed the 
commercial stand and gate allocation software CAST, 
which is used by the aviation industry worldwide. The 
software uses a heuristic approach to provide a near-
optimal and in practice well proved solution for the 
gate assignment problem. 

CAST is capable of allocating flight schedule 
demands to available aircraft gates and passenger 
gates at an airport, considering any operational 
constraints and preferences that are applied in the real 
world. The software was used to evaluate in how far 
flight time predictions can lead to a more robust 
allocation planning. As baseline for this investigation 
Machine Learning techniques, such as random forest 
regressor have been used to generate predictions based 
on historical flight scheduled and weather condition 
data.  

The objectives of this paper are: 

• To couple a commercial allocation simulator 
software to an external optimization algorithm 
for improving the allocation. 

• To increase the gate assignment robustness by 
using a machine learning arrival/departure time 
predictor in combination with the optimization 
algorithm.  

• Evaluate potential improvements of the allocation 
results  by using a genetic algorithm. 

The rest of the document is as follows. First, a 
literature review regarding the GAP and delay 
predictors is provided. Secondly, the algorithm 
overview is provided. Thirdly, the data and the delay 
predictor algorithm are explained. Fourthly, the 

optimization algorithm is presented. Then, results are 
shown and discussed. Finally, conclusions and future 
work are introduced. 

2. State of the art 

2.1. The Gate Assignment Problem  

This problem has been tackled in many different ways 
for different objectives and using different 
optimization techniques as thoroughly detailed by 
(Gülesin Sena Daş, Gzara, & Stützle, 2020). These 
authors as well detailed the typical GAP model. 
Another model was presented by (Jiefeng & Bailey, 
2001). These type of models normally only take some 
constraints into account as it is really complicated to 
mathematical model all constraints. In this sense, the 
introduction of a simulator overcomes these modeling 
issues. Another interesting model taking into account 
the retail activity was presented by (G. Sena Daş, 2017). 

The use of metaheuristic algorithms to solve the gate 
assignment problem to minimize passengers’ walking 
distance and the number of aircraft assigned to remote 
gates was implemented in (Aktel, Yagmahan, Özcan, 
Yenisey, & Sansarcı, 2017) using tabu search and 
simulated annealing. Marinelli, Dell’Orco, and 
Sassanelli (2015) implemented bee colony 
optimization and later they combined that algorithm 
with the biography-based optimization algorithm. 
Tabu search was implemented by Bi, Wu, Wang, Xie, 
and Zhao (2020) to maximize the number of 
passengers boarding and deboarding from the bridge 
instead of using busses due to remote gate allocation. 
Ant colony optimization to minimize delays, buffer 
time  and matching aircraft with gates (Zhao & Cheng, 
2014) . (Cheng, Ho, & Kwan, 2012) also implemented 
Genetic Algorithms, Tab search and simulated 
annealing to minimize passenger walking distance.  

The use of genetic algorithms, a class of evolutionary 
algorithms, to solve the gate assignment problem is 
not new. Bagamanova and Mota (2020) applied genetic 
algorithms with Bayesian modeling to successfully 
create robust assignment schedules while minimizing 
aircraft waiting time and reducing taxi distances and 
they also used a similar approach to reduce the 
emission footprint in airports (Bagamanova & Mujica 
Mota, 2020). C. H. Yu and Lau (2014) used genetic 
algorithms and the large neighborhood search 
focusing on tow costs and passenger distance. Gu and 
Chung (1999) developed an algorithm based on genetic 
algorithms able to reassign delayed flights. Bolat 
(2001) also applied genetic algorithms to minimize the 
gates idle time. A variation of genetic algorithms called 
immune genetic algorithm was also proposed by 
(Wang, Zhu, & Xu, 2014). Kim, Feron, and Clarke (2013) 
applied a combination of genetic algorithm with tabu 
search to minimize the aircraft taxiing time and the 
passengers transit time.  

Genetic Algorithms have also been proved to be 
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effective in other types of aviation-related 
combinatory optimization problems such as aircraft 
trajectory optimization (Murrieta-Mendoza, Botez, & 
Félix Patrón, 2015) (Patrón & Botez, 2015), taxi 
scheduling (Liu & Guo, 2010), air traffic sector 
regrouping (Delahaye, Alliot, Schoenauer, & Farges, 
1995), aircraft arrival sequencing and scheduling for 
multiple runaways (Hu & Di Paolo, 2009). 

Genetic algorithms were selected for this problem 
due to two main reasons. Because it has been 
previously applied to solve the gate assignment 
problem as in (B. Yu, Guo, Asian, Wang, & Chen, 2019) 
and the as the previously mentioned references giving 
confidence that it can be applied for this same problem. 
The second one is Genetic algorithms have proven its 
efficiency for finding solutions to combinatory 
problems as well as for sub-optimal solutions. 

2.2. Flight Delay predictors 

Flight delay prediction is a topic that has been largely 
studied in the literature. Different approaches and 
applications can be obtained, such as classifying the 
delays to have a binary or a multi-class classification 
problem. In (Gui et al., 2020), researchers used neural 
networks applied to automatic dependent 
surveillance-broadcast (ADS-B) data to predict flight 
delays using multi-class classification (delays times 
coded into different classes). In (Truong, 2021), 
Bayesian networks augmented naïve Bayes (BNAN) 
were used to classify delays. Other studies focus on 
estimating an actual value in minutes. For our 
approach, it was required to provide delay prediction 
in terms of minutes to be incorporated to the gate 
allocation algorithm. In (Qu, Zhao, Ye, Li, & Liu, 2020), 
three different algorithms were implemented to 
classify delays: Denoising autoencoder with 
Levenberg-Marquart algorithm (SDA-LM), 
autoencoder with Levenberg-Marquart algorithm 
(SAE-LM), and denoising autoencoder (SDA), where 
SDA-LM performed better than the other two models. 

Rebollo and Balakrishnan (2014) implemented 
random forest to estimate the delay in minutes at 
different time horizons. The error variated from 20 
min (2 h forecast horizon) to 27.4 minutes for a 24 h 
forecast horizon. 

B. Yu et al. (2019) applied a deep learning approach 
for flight prediction. In their study, they define the 
important factors that can be used to predict flight 
delays. They mention, for example, having data related 
to air traffic control and information about previous 
flights delay. If available, this data could increase the 
prediction capabilities of any algorithm. However, this 
data was not available for our project. They also 
compared results for the Mean Absolute Error (MAE) 
from their proposed algorithms, varying anywhere 
between 8.41 and 15.56 minutes. This MAE is an 
evaluation metric used with regression models. The 
MAE is defined as the mean error value of the 
individual prediction errors over all the data evaluated 

instances. The values obtained by Yu et al. are a good 
benchmark to compare our results. Guo et al. (2021) 
obtained results with a MAE between 8.73 minutes and 
13.85 minutes. 

Zoutendijk and Mitici (2021) describe an interesting 
approach to predicting flight to be implemented to the 
gate assignment problem as well. Their results show a 
MAE of less than 15 minutes per flight. In this study, 
they present a comprehensive literature review and 
show how other researchers obtain different MAE 
values, which are dependent on which data is available 
to the researchers.  

Even if good results have already been obtained in 
the literature, this document presents an approach 
specific to our study case where a powerful airport 
allocation software, such as CAST, is coupled with real 
historical flight data from a large European airport, as 
well as weather data. Our results improve some of the 
results seen in the literature for which more data is 
available and provide a good indication of the actual 
flight delay in minutes for the purpose of our project. 

2.3. Main Contribution 

The main contributions of this paper are the synergies 
achieved by coupling of a commercial airport 
allocation software (in this study CAST ® by ARC) with 
an optimization algorithm in a general framework 
where both techniques benefit each other to generate a 
more efficient solution. An advantage of coupling the 
allocation software with an optimization algorithm is 
that the software can reflect the operational planning 
at an airport in a very high detail, considering actual 
and empirical restrictions, which are not always 
revealed in technical documents and sometimes hard 
to model and the optimization algorithm can focus on 
suggesting solutions validated in turn by the allocation 
software that has all the information. Furthermore, 
the introduction of machine learning predictors 
provides more realistic arrival/departing times. These 
times can be incorporated into the schedule to make it 
more robust. 

3. Methodology 

This section briefly explains the overview of the whole 
algorithm, available data, the development of the 
regression algorithm and the optimization algorithm. 

3.1. The Algorithm Framework  

The relationship between the different parts of this 
work is depicted in Figure 1 where first, the machine 
learning predictor algorithm estimates arrival and 
departure dates considering operational and weather 
parameters as will be discussed in Section 3.2. 
Predicted flight times are fed to the CAST allocation 
software and the optimization algorithm. Constant 
communication is established between the 
Optimization algorithm and the software which 
exchange constantly potential stand assignment 
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solutions (the algorithm) and the cost of those 
solutions (the  allocation software). 

 
Figure 1. Relationship between the predictor algorithm, the 
optimization algorithm, and the allocation software.  

Each one of these parts of the algorithm are briefly 
explained next.  

3.2. Data and the Regression – Predictor algorithm 

For the data regression algorithm, two data sets were 
used. One regarding the flights served by the Zurich 
airport, and the other containing the weather 
information.  

The first dataset contains information for 323,461 
flights including departures and arrivals, for the years 
2019 and 2020. The relevant data used in this project 
can be seen in Table 1. 

Information such as aircraft type and date and time 
have been transformed into simplified categories. The 
aircraft types have been converted into APC (approach 
speed categorization) aircraft codes (B-F), and the 
weekdays, months, and hours have been extracted 
from the date and times of flight. Furthermore, the 
flights have been categorized based on their flight time 
into Early (3 am – 11 am), Mid (11 am – 7 pm), and Late 
(7 pm – 3 am) based on peak hours of operation at 
Zurich airport. 

An outlier detection and removal process has been 
applied when an airline has fewer than one flight per 
month to, or from the airport, a city pair has fewer than 
one flight per month or delays above 120 minutes, or 
flights earlier than 50 minutes based on the historical 
data distribution. 

Weather data has been included to improve the 
prediction capabilities of our algorithm. The data is 
obtained every 30 minutes, and it has been linearly 
interpolated to each scheduled flight time. The data 
relevant to our algorithm can be seen in Table 2. 

Table 1. Historical information data.  

Information Format 

Date and time (expected) Datetime 
Date and time (actual) Datetime 
Gate Category 

Aircraft type Category 
Runway Category 
Runway configuration Category 
Origin/Destination airport Category 
Date and time (expected) Datetime 

Table 2. Weather data.  

Information Unit 

Wind direction Degrees 

Wind speed Knots 
Gust tip Knots 
Temperature Degrees Celsius 
Dew point Degrees Celsius 
Visibility Meters  

Precipitation Code METAR 
Wind direction Degrees 

The prediction algorithm has been set up as a 
regression problem, i.e., the actual arrival or departure 
time in minutes will be predicted. For this, the time 
difference is calculated as expected arrival or 
departure minus actual arrival or departure. A direct 
solution provides prediction in minutes. As the delay in 
minutes, data distribution is non-uniform and 
presents a positive skew (the mode is lower than the 
median, which is also lower than the mean). A skew in 
the data could reduce the quality of a regression 
prediction algorithm. A Random Forest Regressor was 
implemented using scikit-learning (Pedregosa et al., 
2011). Data was split into 80% for training and 20% for 
testing. 

3.3. Optimization algorithm  

Genetic Algorithms mimic the evolution process of 
species based on the evolution theory developed by 
Charles Darwin.. The most economical solution is 
reported as the candidate’s optimal solution. Genetic 
Algorithms do not guarantee finding the optimal 
solution. 

The general functioning of the optimization 
algorithm is shown in Figure 2. The blocks using CAST 
represent processes when the optimization algorithm 
communicates with CAST.. Each block of this diagrams 
is explained next.  

3.3.1. The Solution Cost 

There are different operational costs associated 
with assigning a turnaround to a stand. Some examples 
of these costs are tow operations’ cost, aircraft size, 
airline stand preference, geometric stand 
dependencies, domestic or international flights, 
among others. These costs are defined by the user and 
vary between different airports. These costs are 
captured into CAST.  
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Figure 2. The Optimization algorithm schema 

This way, the software provides all the elements 
composing the assignment cost. The total cost of 
assigning a flight f to a stand is given by Eq (1). 

𝐴𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝐶𝐴𝑆𝑇 =  ∑ 𝑐𝑗

𝑗

0
 (1) 

Where cj stands for each different operational cost. 
Constraints such as assigning an over-dimensioned 
aircraft to a given stand that cannot hold it or 
assigning an international turnaround to a domestic 
stand result in a high-cost value.  This value indicates 
that a constrain has been violated, thus the assignment 
is non-feasible. 

An example of the assignment cost computation is 
given in Table 2 a hypothetical turnaround (FL123 :: FL 
124) is assigned to four different stands. The cost of 
each assignment is computed with three simple costs 
as an illustration. Assignment costs are given in the 

row Assigned Cost Cast obtained  in Table 2 by adding 
the three sub-costs. In this hypothetical example, 
stand  202 is not a feasible stand to be assigned to this 
turnaround as the international stand constraint is not 
respected resulting in a very high cost . For example, if 
the maximal cost value found in the assignments 
different than infinite was of 100, the high value was 
100 times this value to be 10000 as in Table 3. 

Table 3. Turnaround Assignment Costs Computation Example.  

Assign Turnaround FL123::FL124 to stands 

Stand 101 202 312 416 

Airline Preference Cost  100 12 8 6 
Geometric Stand Cost 0 0 0 1000 

International Stand Cost 0 1000 0 0 
Assigned Cost CAST 100 1012 8 1006 

The total cost from an assignment can then be 
defined by the sum of all individual feasible cost 
assignments as in Eq. (2).  

𝐴𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =  ∑ 𝐴𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝐶𝐴𝑆𝑇𝑖

𝑖

0
 (2) 

As it is important to identify all the non-feasible 
flights for comparisons later in the results section, the 
Total Assignment Cost can be rewritten as in Eq (3) 
where the number of non-feasible flights is identified 
under the parameter hold multiplied by a large 
artificial value. 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡

=  ∑ 𝐴𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑖

𝑖

0
+ (# ℎ𝑜𝑙𝑑

∗ ℎ𝑜𝑙𝑑 𝑐𝑜𝑠𝑡) 

(3) 

Where hold cost takes the high value described before. 
The objective function is then to minimize the Total 
Assignment Cost. 

3.3.2. The Chromosomes 
A solution consists of assigning all turnarounds to a 

unique stand or identifying a turnaround not assignable 

due to not having enough stand available. A turnaround is 

composed of inbound and outbound flights flown by the 
same aircraft, a tow-in and an outbound flight, or an 
inbound flight and a tow-off.  
If the turnaround row order is kept constant A general 

chromosome can be encoded as in Eq (4). 

𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑚𝑒 = [𝑆𝑡𝑎𝑛𝑑1, 𝑆𝑡𝑎𝑛𝑑2, 𝑆𝑡𝑎𝑛𝑑3, … , 𝑆𝑡𝑎𝑛𝑑𝑛] (4) 

3.3.3. Initial Population 

The initial population is the first part of the 
optimization algorithm. It consists of many different 
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solutions (feasible or non-feasible). As mentioned 
before, the feasible solution provided by the allocation 
software is used as an input for the genetic algorithm. 
This solution is selected as the first chromosome of the 
population. This first chromosome is mutated many 
times to provide a different set of first solutions.  

3.3.4. Evaluation 

The population’s chromosomes are evaluated on the 
cost of assigning turnarounds to stands. Each 
chromosome cost is computed as with Eq. 3. The most 
fitted individuals are those that provide the lowest 
cost. At this stage, it is verified if there are conflicts or 
violations. The evaluation cost is obtained from CAST 
along with the held flights. The chromosome is sent to 
CAST which in turn replies with the cost.  

3.3.5. Selection 

The selection process selects what chromosomes can 
reproduce to pass their genetic information. For this 
process, it is desired to select the most fitted 
chromosomes while giving chances to the least fitted 
chromosomes to be selected. 

The tournament method was chosen as the 
selection method. Here, chromosomes compete 
against each other, and winners are determined using 
each chromosome’s cost. The winners of the 
tournament are the chromosomes used as the base for 
reproduction.  

This type of selection was selected due to the nature 
of the solution. Modifying a feasible solution quickly 
degenerates its quality as allocation rules are violated. 
It is desired to provide the best solution to reproduce. 
When the population is large, as in this problem, non-
feasible solutions would as well emerge victorious 
bringing diversity to the population and avoiding 
getting stuck in a local optimal. 

3.3.6. Reproduction: Crossover 

Once the chromosomes are selected, they can 
reproduce and create a new generation. For this 
reproduction, the crossover method is selected. The 
crossover involves selecting two different 
chromosomes and interchanging their genes.  

A random number of neighbor genes in the 
chromosomes is selected and exchanged within the 
chromosomes as in Figure 3 to create the new 
chromosome (offspring).  

In an attempt to improve the quality of the 
offspring, the parents’ genes are sorted by time. Gen 
G1,1 in Figure 3 begins for example at 9:00 AM, gen 
G1,2 begins at 11:00 AM, and so on. This helps to avoid 
time conflicts in the new chromosome. 

 
Figure 3. The Crossover Process.  

3.3.7. Mutation 

Each new chromosome has a small probability of 
mutating. In this process, three different strategies 
were developed. First, genes are selected based on the 
probability to mutate or not. The second strategy was 
to select all invalid genes and mutate them, the third 
and last strategy consisted in selecting a given 
proportion of the most expensive genes and mutating 
them. The mutation selection strategy is selected by 
the user.  

The actual mutation can happen in two different 
strategies. The first is random replacement with 
statically valid genes where the genes to mutate are 
randomly replaced by other genes. The second  
strategy is a random exchange weighted according to 
statically valid gene costs. Here, the genes are 
statistically weighted to their cost. The genes with the 
statically lowest and valid costs have the highest 
probability of being selected and assigned to the gen to 
mutate. The mutation replacement strategy is selected 
by the user.  

3.3.8. Immigrants 

At the end of every iteration, there is a chance that 
some chromosomes get discarded from the 
population. This is called immigrants. To replace the 
discarded ones, new random chromosomes are created 
and added to the population. This new set of 
chromosomes are called immigrants and their purpose 
is to bring diversity to the population to try to avoid the 
algorithm getting stuck. If after the unique block in 
Figure 2, the population is below the population size, 
the lacking chromosomes are added via immigrants.   

3.3.9. Solution Validation 

The stand-allocation solution is sensible. A small 
change in a solution quickly degrades due to the 
complex rules in an airport and time constraints. The 
stochastic nature of the genetic algorithm tends to 
violate constraints and might create low-quality 
solutions. To improve these low-quality solutions, 
they are re-allocated using the heuristic available in 
CAST.  

Finally, it is verified whether the population size is 
still the required one. If there is underpopulation, 
chromosomes are added until the specified number is 
reached. Whereas overpopulation does the opposite. 
The worst chromosomes are discarded. 
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4. Results 

This section exposes results for this paper. First, the 
results for the prediction algorithm are shown and 
results are discussed. Then, preliminary results for the 
optimization algorithm are displayed and shown.  

4.1. The Delay Prediction Algorithm  

Table 4 shows the time of arrival results after the 
algorithm was ran taking the weather into account and 
excluding it from the training. This is the difference 
between the expected arrival/departure time and the 
real arrival/departure time.  

Table 4. Prediction Results.  

 Arrivals Departures 

 Weather Data Excluded 
MAE 10.19 11.81 

 Weather Data Included 
MAE 9.68 11.8 

The MAE provided by the prediction algorithm can 
be considered as acceptable when looking at the 
literature in similar topics. The reason for the high 
MAE value can be due to the skewness of the data, the 
low correlation between the delay in minutes and the 
weather variables, as well as possible low correlation 
between the other categorical values from the 
historical data. It can also be seen that it is more 
difficult to predict the arrival time, which can be 
because the data is spread out over a larger time span. 
Key data from previous flight delay for a specific 
aircraft is missing and would have been an important 
factor to improve our results (as per the literature 
review). This aligns with the results obtained by 
(Belcastro, Marozzo, Talia, & Trunfio, 2016) and (Qu et 
al., 2020) where the accuracy improved when weather 
was incorporated into the model. 

To visualize the potential effect of the predicted 
times in scheduling, 5 random schedule days from the 
Zurich airport were selected from the year 2019. 
Allocation was carried out using CAST® with the 
original departure and arrival times. Then, the same 
days were re-allocated with CAST with the actual 
departure/arrival times. The number of non-allocated 
turnarounds due to time overlaps between the planned 
and the real times were counted. The same process is 
repeated, but the first allocation is carried out using 
the predicted schedule times due to delays and early 
arrivals. Finally, the number of non-allocated flights 
was counted. Results can be seen in Figure 4. 

The number of turnarounds affected using the 
predicted arrival/departure times (black bars) 
diminishes compared to the original schedule. Day 3 is 
a good example of the potential of using predicted 
times when assigning stands to turnarounds. On this 
day, 17 turnarounds more than using the predicted 
were not assigned to any stands. This means that in 
arriving aircraft passengers must wait on the apron 
until a stand becomes available to unload the aircraft. 

This causes discomfort in passengers, and it also 
affects the planning of ground handling personnel. 

 

 
Figure 4. Number of affected flights after  the re-allocation 

4.2. The Optimization Algorithm   

The optimization algorithm were evaluated using 
historical schedules from the Zurich International 
Airport. The scheduled stand assignment was allocated 
in CAST which in turn provided the cost. Then, the 
solution was ran with the developed optimization 
algorithm and cost comparison were carried out.  

The selected date for the case study using a 
prototype of the algorithm described in this paper 
consisted of 362 turnarounds to be assigned to 177 
stands. The historical allocation resulted in 23 
turnarounds that were not assigned to stands (hold), 
the cost of the assigned flights was 125,048,355 units. 

The allocation provided by the genetic algorithm 
can be seen in Figure 5. Note that the allocation is given 
in term of gates instead of stands. In this solution, 23 
turnarounds were as well not assigned to stands and 
the cost of the assigned flights was reduced to 
125,046,528 units. The solution provided by the 
prototype algorithm then corresponds to savings of 
1827 units. Other solutions reported savings of 1246 or 
918. This means that the optimization algorithm can 
improve the planned solutions. 

Another study was carried out using a mid-size 
airport with 132 stands and 1000 flights scheduled 
using the final version of the algorithm detailed in this 
paper. The number of flights exceeds the number of 
available stands. A heuristic developed by ARC was 
used to find the solution to this allocation. The result 
provided a cost of 14,020,522 units where 14 
turnarounds were not allocated. The cost of the 
allocated flights was 20522. The cost of each non-
allocated flight is 106.  

The algorithm described in this paper was run 5 
times for 10000 generations. The cost provided by the 
heuristic was the input for the genetic algorithm to 
improve this result as shown in Figure 6 where the 
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dotted line is the reference cost of 20,522 units. 

This algorithm suggests that Test 2 and Test 3 are 
more expensive than the reference flight. Test 1 
(20,318 units) and Test 4 (20,476 units) are more 
economical than the reference cost. However, this is 
because there are additional turnarounds allocated as 
shown in Figure 7. 

The reason why the cost of allocation in Test 2 is 
higher than others (for example Test 5), could be that 
turnarounds were allocated in expensive stands. For 
example, in remote stands or stands where special 
equipment is required but not always available. 

However, this is preferable to keeping an aircraft 
waiting on the apron. Figure 8 shows the final cost 
considering the non-allocated flight. Here it can be 
seen that compared to the reference (14,020,522 
units), all flights are more economical than the 
reference. Even Test 2 reported similar costs to the 
other Tests. The large difference shown in Test 4 is 
because, for that test, only 1 additional test was 
allocated. 

 
Figure 6.Optimization for Different Tests 

 
Figure 7.Additional turnarounds allocated by the algorithm  

Figure 5. The Optimized Flight Schedule for a given day at Zurich International Airport 
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Figure 8.Additional turnarounds allocated by the algorithm  

5. Conclusions 

The work presented in this paper combined machine 
learning, optimization and a commercial allocation 
software as a cost model for a gate allocation 
optimization algorithm. 

It can be concluded that the allocation software 
CAST can be used in combination with an optimization 
algorithm. It was possible to demonstrate that the 
outcome overcome the solutions provided by the 
software alone and with the combination of the ML 
technique for predicting the delay the allocation 
become more robust.  The framework presented allows 
a more efficient approach that considers practical and 
relevant constraints opposed to the typical 
mathematical models available in literature.  

The predictor delay algorithm provided good results 
which allowed to assign  realistic predications of 
departure/arrival times. Results showed that when 
using the predicted arrival and departure times 
reduced the number of non-allocated flights when 
compared against the original schedule with the real 
historical arrival/departure times. 

Future work aims to incorporate new parameters 
into the prediction model such as the leg number of 
each flight. For the optimization algorithm, other 
algorithms will be explored such as Tabu Search to see 
if better results can be found.  
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