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Abstract

Agent-based epidemiological models have been applied widely successfully during the SARS-CoV-2 pandemic and assistedpolicymakers in assessing the effectiveness of intervention strategies. The computational complexity of agent-based models is stillchallenging, and therefore it is important to utilize modern multi-core systems as good as possible.In this paper, we are presenting our work on parallelizing the epidemiological simulation modelMATSimEpisim. Episim combines alarge-scale person-centric human mobility model with a mechanistic model of infection and a person-centric disease progressionmodel.In general, the parallelization of agent-based models with an inherent sequential structure — in the case of epidemiological models,the temporal order of the individual movements of the agents — is challenging. Especially when the underlying social network isirregular and dynamic, they require frequent communication between the processing elements. In Episim, however, we were able totake advantage of the fact that people are not contagious on the same day they become infected, and therefore immediate healthsynchronization is not required. By parallelizing some of the most computationally intensive submodels, we are now able to runMATSim Episim simulations up to eight times faster than the serial version. This makes it feasible to increase the number of agents,e.g. to run simulations for the whole of Germany instead of just Berlin as before.
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1. Introduction

Episim is a large-scale agent-based epidemiological modelthat combines a person-centric human mobility modelwith a mechanistic model of infection and disease progres-sion (Müller et al., 2021).
The movements of individuals, including performedactivities in which they may interact with others, can bedirectly taken from the data. Episim can be used to evalu-ate various intervention strategies, such as closing educa-tional facilities, reducing out-of-home activities, wearing

masks, or contact tracing and quarantine.
The model is regularly used to advise the German fed-eral government (e.g. Müller et al. (2021b,a)). The currentmain contribution of these reports is to provide differen-tiated predictions of the impact of various interventions,such as reductions of activity participation, masks, or vac-cinations.
Each of these reports requires between 10000-20000simulations based on mobility data for Berlin (Germany)and taking into account the activities of 25% of Berlin’spopulation, i.e. almost one million people. The model is
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implemented in Java and the initial version was single-threaded. In this paper, we are presenting our paralleliza-tion approach, which is thread-based and uses standardJava libraries.On the one hand, the goal was to improve the utilizationof the computing nodes for simulations of this configu-ration. On the other hand, the parallelization should alsoallow the simulations to be extended to the whole of Ger-many, or alternatively to the entire Berlin population.Section 2 gives a brief overview of different approachesto epidemiological modeling and the specifics of agent-based models in this area. Section 3 then introduces MAT-Sim Episim itself, explaining which parts of the code wereparallelized and the ways in which this was done. The per-formance improvements achieved by the parallelizationare then presented in section 4, and section 5 draws theconclusions from this work.
2. State of the art

Modeling infectious diseases has been a topic of interest formany decades, going back to a time before computers wereinvented. One of the most well-known types of models arecompartmental models, with the SIR-Model (susceptible-infected-removed) (Kermack and Mckendrick, 1927) inits basic form.In compartmental models, each individual belongs toexactly one exclusive group –compartment. The transi-tion rates between the compartments are defined by aset of mathematical equations. This simplicity makesthem straightforward to compute, and the performancedepends on the underlying solver. Many variations withadditional compartments have been applied throughoutrecent years, also in the context of modeling SARS-CoV-2spread (Ndaïrou et al., 2020; Hou et al., 2020; Leontitsiset al., 2021).Though, the main drawback is, that the populationswithin the compartments are assumed to be homogenous.They do not reflect human social structures, where inter-

actions are typical limited to a certain contact network(Tolles and Luong, 2020). Furthermore, modeling newintervention strategies, one key interest area to containthe spread of a pandemic, is often difficult as the effect ontransition rates are not known a-priori.Agent-based (or individual-based) models have beenwidely successful in this regard as they allow capturing amore complex disease process, individual behavior, ageand household structures, as well as geospatial structures.Many agent-based models, including the one evalu-ated in this paper, have been used to predict the effectsof intervention strategies such as mobility restrictions,masks, contact tracing and testing, as well as pharmaceu-tical interventions (vaccination) (e.g. Müller et al. (2021);Mahdizadeh Gharakhanlou and Hooshangi (2020); Hinchet al. (2021); Kerr et al. (2021); Bitencourt (2021)).This complexity makes agent-based models muchmore computational expensive than compartmental mod-els. Given that modern computers are equipped with anincreasing number of cores, it is crucial to utilize as manycores in parallel as possible.Parallelization is challenging, especially when the un-derlying social network is irregular and dynamic, and themany interactions between agents require frequent syn-chronization.During the early phases of the COVID-19 pandemic,most research has naturally focused on predictions andstrategies to contain the pandemic. Some authors reportthe performance of their models and scalability in termsof problem size (Kerr et al., 2021). Nevertheless, it seemsthat parallelization has not been a key focus area. Thishas been different before the pandemic, as several highlyconcurrent models to simulate the spread of infectiousdiseases have been developed and applied (Barrett et al.,2008; Grefenstette et al., 2013; Bhatele et al., 2017); mostoften to simulate the spread of seasonal influenza. In thecase of COVID-19, it appears that more often new modelshave been developed instead of using existing frameworksfor infectious diseases. One reason could that it required
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Figure 1. Illustrative daily plans of persons and their activities; Colored boxed represent an activity at a specific location. Gray boxes indicate an overlap,where persons may have a contact and could possibly infect each other.
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new methods of interventions and restrictions that havenot been seen and modeled before. Likewise, Episim hasalso been specially develop for the COVID-19 pandemicand started with a single-threaded implementation.In this paper, we present our parallelization approachand show results on scenarios of different sizes up to thewhole country of Germany. The main idea is similar tothe approach presented by Barrett et al. (2008). For in-stance, they also divide the computational workload bythe geographical locations of agents. Compared to otheragent-based COVID-19 simulations, Episim is one of a fewthat provides a detailed study about parallelization.
3. Materials andMethods

MATSim Episim builds on the multi-agent transport sim-ulation (MATSim) Axhausen et al. (2016), an activity-based, extensible, multi-agent simulation framework im-plemented in Java. MATSim simulations produce eventfiles that describe the movement and activities of each in-dividual person. Such plans are illustrated in Figure 1. Theidea of Episim is to attach a contact- and infection modelto this information in order to simulate large scale virusspreading. After each performed activity, a contact modeldetermines with whom an agent had a contact and an in-fection model determines the probability of an infection ifany of the agents was carrying the virus.Episim uses the MATSim infrastructure for configura-tion, setting up dependencies, and its data schemas forreading or writing files. Apart from that, the Episim simu-lation loop and models are standalone new code, also de-veloped in Java. In its original form, it is single-threaded,apart from the garbage collector. Recent versions of Episimconsist of many more submodels, e.g for disease progres-sion, contact tracing and quarantine, vaccinations, inter-ventions such as mask or curfew hours, or even geograph-ical restrictions. It also supports resuming from previoussimulation state, which can save a lot of time, as we aremore than two years into the pandemic, and simulatingall of this history is not always necessary.The Episim model is regularly used for reports onthe current SARS-CoV-2 situation Müller et al. (2021b,a).Model details and results can be found in Müller et al.(2021) or Nagel et al. (2021). The remainder of the paperwill rather focus on our parallelization approach, that is ingeneral also applicable to other agent based models.Figure 2 gives an overview of the parallelization ap-proach and core simulation loop. For each day, Episimruns all submodels iteratively, until the desired number ofsimulation days have been reached. Disease progressiononly happens at the end of one day, meaning one personcan not get infectious on the same day it was infected.The focus is on parallelizing the processing of move-ment profiles, as well as contact and infection models,since this requires the most computing time. To paral-lelize this, partitioning could be done over the set of per-sons or the locations. However, since at the time a person

leaves a location, we need to know which other people werealso there during their stay. Partitioning the set of peoplewould require a large synchronization effort.On the other hand, the locations can be handled verywell independently of each other. Even in the case that aperson has actually already been infected at another loca-tion, this person can only infect other people a few dayslater, so that no immediate synchronization is necessaryhere.
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Figure 2. Parallelization approach and inner simulation loop, which will beexecuted iterativly for the desired number of simulation days.

When the movement profiles of individuals are aggre-gated and sorted in time, the individual events can be eas-ily assigned to a thread depending on the location. Fortu-nately, MATSim already provides exactly the movementprofiles in this aggregated, sorted form.In order to achieve good load balancing, it is importantto consider how crowded the locations are, since, for ex-ample, a shopping mall has to process many more eventsthan an apartment, and therefore the runtime for iteratingall the events belonging to a location can be very different.The threading implementation itself is done using Java8CompletableFutures. Additional synchronization was nec-essary for contact tracking, since the same list of contactscan be modified from different threads.Through profiling, it was known that about 80% of theruntime is required for the processing of these movementprofiles in the single threaded version. In the remainingpart of the code, we found two time-consuming loops that
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could be parallelized using ParallelStreams.
4. Results and Discussion

The performance results presented in this section refer tosimulations performed on the Lise cluster of the North Ger-man Supercomputing Alliance (HLRN). The nodes of thecluster are equipped with 2 Intel Cascade Lake Platinum9242 (CLX-AP) CPUs and 384 GB Ram.The simulations used in the reports for the Germanfederal government (e.g., Müller et al. (2021b,a)) were per-formed for the state of Berlin. To save computation time,the number of agents in these simulations is reduced to aquarter of the individuals they represent. This configura-tion is referred to as “berlin25” in the following figures,where 25 stands for 25%, as only 25% of the population isrepresented by an agent.In addition to this configuration, we will also examinetwo other configurations. The “berlin100” configurationrefers again to the area of the federal state of Berlin, butthis time the activities of the complete Berlin’s populationis taking into account.And the “germany25” configuration extends the scopeof the study to the area of Germany, whereby as in the“berlin25” configuration again only 25% of the populationis considered.
(in Mio.) berlin25 berlin100 germany25
Locations 0.9 1.3 13.3Agents 1.2 4.8 20.6Events per Week 75.8 295.6 973.1

Table 1. The number of locations, persons and events for the differentconfigurations. An event refers to the movement profiles of the agents andis either the arrival or the departure of a person from a location.

Table 1 shows the number of places, people and eventsfor these configurations. For each activity there are twoevents. The first determines when a person reaches thelocation and starts the activity, the second when a personleaves the location. The probability of an infection is calcu-lated when the person leaves the place, both for the personhimself and for all contacts of the person.
4.1. Single simulation on node

First, we consider the speedup achieved when only a sin-gle simulation is started on a node, and the resources areartificially limited to n threads.The overall performance increase achieved by the par-allelization approach described in section 3 is shown inFigure 3, where the simulations went through 50 itera-tions of the inner simulation loop. This is the maximumnumber of iterations possible for the Germany25 configu-ration before it exceeds the 12-hour wall time limit, whichis the maximum job length on the standard nodes of theLise cluster.
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Figure 3. Speedup compared to the single threaded runs for the completeinner simulation loop.

We see that compared to the “berlin25” configurationincreasing the number of agents per location as in the“berlin100” configuration increases the speedup for highthread counts by a factor of three, and increasing the num-ber of locations themselves as in the “germany25” config-uration only by a factor of two. This can be explained by thefact that the increasing the number of agents reduces theproportion of time spent in serial code, as Table 2 shows.
berlin25 berlin100 germany25

time (ms) in serial section 1617 8566 90541time (ms) in parallelized section 12615 140092 720997maximal speedup (96 cores) 8.81 16 8.85maximal speedup (∞ cores) 9.6 19.1 9.64
Table 2. Average runtime of the inner simulation loop for the serial andparallelized parts. The runtimes are given for simulations utilizing only asingle thread. From Amdahl’s law follows the maximal speedup possiblefor simulation runs on a single Lise node with 96 cores and the theoreticalmaximal speedup in the case of unlimited resources.

When we compare the “berlin25” and “berlin100” con-figuration in Table 2 we see that the serial runtime in-creases more or less linearly with the number of agents,but the parallel one takes 11 times longer when we quadru-ple the number of agents. This is due to the way the Move-ment Profiles are processed and explains why the runtimeportion of the serial code decreases in the “berlin100” con-figuration and thus the speedup is better than in the otherconfigurations.When we compare the maximal possible speedup forthe given fraction of time used for the serial section of thecode to the real speedup achieved as shown in Figure 3,we can see that only the “berlin100” configuration comesnear to this limit.And also if we only compare the time needed for pro-cessing the movement profile, as shown in Figure 4, wecan see similar patterns.
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Figure 4. Speedup of the Infection Submodel compared to the singlethreaded runs.

This is a bit surprising, since it would be expected thatthe load balancing works better the more locations thereare.
berlin25 berlin100 germany25

load 0.8 0.77 0.99
Table 3. Load balancing the infection submodel for runs with 96 cores.In the optimal case, where all cores take the same amount of time for thecalculation, the value would be 1.

Table 3 confirms this expectation. The values giventhere correspond to the longest runtime of a core for theprocessing of the movement profiles divided by the meanvalue of the runtimes of all cores. The reciprocal value thuscorresponds to the maximum possible improvements inthe case that all cores require exactly the same amount oftime.Why the achieved speedup results do not match the bal-ancing needs further research. The current hypothesis isthat the agents to locations ratio plays a role in the synchro-nization required to make the infection submodel threadsafe.
4.2. Multiple simulation on node

For the results discussed so far, a simulation allocated al-ways a whole node. However, since different scenariosare to be investigated for the reports (e.g. Müller et al.(2021b,a)) and this is also done for different seeds due tothe stochastic behavior of the simulation, several simula-tions are usually started in parallel on a node.In this section, we focus on the “berlin25” configura-tion as it is used for the reports. Since each simulation runrequires about 11 GB of memory, it is not possible to start asimulation per core on a standard compute node of HLRN’sLise cluster. Instead, only 32 simulations can be started in

parallel on a single node, although it has 96 cores. So theserial version of Episim left a lot of resources unused.
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Figure 5. Speedup compared to the single threaded runs for different codesections in the “berlin25” configuration, when 32 simulations are per-formed simultaneously on a node.

Figure 5 shows the speedup of the overall simulationand also separately the speedup of the multi-threadedinfection model (MovementProfile) and the loops paral-lelized with Java’s ParallelStreams for the case where 32simulation runs of the “berlin25” configuration were per-formed simultaneously on a single node.
Not surprisingly, the maximum achievable speedup of2.43 with 8 threads is lower than the maximum achievablespeedup of 4.14 with 24 threads for a single run. However,it is interesting to see that the best result is achieved withan overcommitted number of 256 threads on nodes with192 virtual cores, although hyperthreading was counter-productive for the single runs. But since the amount ofruntime in serial segments is relatively high, and thereforethe 256 threads are not always active at the same time, the“gaps”, which are caused by the serial code, can be usedwell by the other simulations.
In Figure 6 is shown, how the improvements are dis-tributed among the serial and the different parallelizedsections. As can already be seen in Figure 5, the loops par-allelized with the parallel streams scale better than theparallelization of the Infection Model (MovementProfile),but the runtime of the Infection Model dominates the over-all runtime. The overcommitment of threads increases theruntime of the serial sections, but with up to 8 threads thisis more than compensated by the runtime improvementsof the parallel sections, until increasing the number ofthreads is counterproductive for the infection model. Theruntime increase seen here can be explained by threadovercommitment, since this reduces the load balancing ofthe movement profile processing, which is quite sensitiveto an uneven thread scheduling.
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Figure 6. Comparing the average iteration runtime of different code sec-tions in the “berlin25” configuration for different numbers of threads perSimulation. 32 simulations are performed simultaneously on a node.

5. Conclusions

As we have shown, it can be useful to examine an existingserial implementation of a model for parallelization capa-bilities, although the performance result certainly cannotmatch an implementation designed from the ground upfor parallelization, as for example Barrett et al. (2008).Also, the approach presented here exploits some fea-tures of MATSim Episim which are not found in manyepidemiological simulations. Especially the fact that themovement profiles are predefined by exogenous data andnot randomly generated at runtime facilitates the load bal-ancing, since the required cpu-time per location is moreor less deterministic and therefore the locations can bereasonably distributed among the threads.Two additional and more common conditions were veryhelpful, namely that the runtime was dominated by theinfection submodel and that changes in a person’s healthstatus do not need to be synchronized within one iteration— which corresponds to one day of simulated time — sincean exposed person cannot become infectious within oneday.Converting all submodels from their sequential struc-ture to a parallel one would be very labor-intensive, butsince many (32) simulations can be started in parallel inthe “berlin25” configuration, this can be partially com-pensated by starting more threads than there are cores.After all, a speedup of 2.4 could be achieved in the compu-tations for the reports to the German government, eventhough only two-thirds of the cores were not used in theserial case.Furthermore, thanks to parallelization, it is now pos-sible to extend the area from Berlin to the whole of Ger-many. Before parallelization, only 50 days could be calcu-lated within the maximum walltime of 12 hours, whereasnow the simulation of a whole year can be performed in 10hours.
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