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Abstract 

The application of artificial intelligence can support employees in decision-making on highly complex issues. The improving performance of computers in 
combination with the progress in deep learning makes it possible to answer problems with a very high complexity. The approach presented in this paper 
demonstrates that production orders of an assembly line can be classified with regard to a chosen key performance indicator using deep learning as a 
surrogate model for a logistics simulation. Evaluating production orders in advance enables a higher performance of a production system without cost 
intensive process improvements. The aim of the approach, demonstrated on an exemplary use case, is to utilize deep learning to determine which sequence 
of individual production orders leads to a high throughput in units. Results gained reveal a significant increase of average throughput and therefore showing 
the feasibility of the approach. The application of artificial intelligence models enables that such complex questions can be solved in a short time. 
Consequently, the model is able to classify production orders with an accuracy of 86%.  

Keywords: Artificial Intelligence, Classification, Deep Learning, Production and Logistics simulation  

 
 

1. Introduction 

New technologies enable the extensive generation of different data 
from heterogeneous systems as well as the efficient processing by 
data-oriented approaches in logistics. This technological progress 
allows the use of computing-intensive applications at 
comparatively low costs. However, conventional methods of 
structured information models or manually written programs are 
reaching their limits regarding the performance and maintenance 
effort. In particular, the use of artificial intelligence (AI) as a type of 
surrogate modeling can help to cope with these new requirements 
and is already of considerable importance (Wuest et al., 2016; 
Bárkányi et al., 2021). AI can be used to support people in making 
time-consuming or difficult decisions within the planning and 
control of production and logistics systems (Timm and Lattner, 
2010). Problems that cannot be solved due to high complexity and 
extensive connections could be potentially solved by AI (Zafarzadeh 
et al., 2021). 

A frequently mentioned issue regarding planning and control of 
a production and logistics system is the scheduling and sequencing 
of production orders (Sun and Xue, 2001; Boysen et al., 2009; 

Dylewski et al., 2016). Surrogate modeling can be used to provide 
data on production sequences and consequently the progress of 
production (Bárkányi et al., 2021). Due to the high complexity of 
the various possibilities for placing products in the right order, 
these are often still optimized on experience-based knowledge. 
This can lead to potentials being wasted regarding the performance 
capabilities of a system. For example, in terms of a higher 
throughput in units, which can be achieved by an improved order 
sequence. A prior validation of the production orders could lead to 
a higher throughput in units without any other process 
adjustments such as further resources or longer working times. 
Hence, costs can be saved this way (Meissner, 2010). In terms of 
the high complexity of validating production orders, this article 
aims to answer the following research question (RQ). 

RQ: Can deep learning be used to classify a production order 
sequence with regard to the system's throughput?  

This article demonstrates the usage of advanced AI techniques 
(deep learning) to classify production orders. The approach shows 
the required components and their interactions. For verification, 
realistic data - generated with a simulation model - is used to train 
and test an advanced AI model. Through the classification of 

 

 

2724-0029  © 2022  The Authors.
doi: 10.46354/i3m.2022.emss.007

Proceedings of the 34th  European Modeling & Simulation Symposium (EMSS), 007

19th  International Multidisciplinary Modeling & Simulation Multiconference

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:abc@uni.edu


2 | 34th European Modeling & Simulation Symposium, EMSS 2022 
 

 

 

production orders, the aim is to provide a faster decision support 
about which sequence will generate a high throughput in units. 

2. State of the art 

In scheduling and planning a multitude of surrogate model types 
are used, e.g. (piecewise) linear regression, polynomial function 
and neural network (Bárkányi et al., 2021). For the following 
approach the focus is on the application of deep learning as a 
surrogate model. In this section, the fundamental functionalities of 
AI are described. Furthermore, the current state of the art and the 
applications within production and logistics systems are presented. 
Finally, the research gap for the following approach is highlighted. 

2.1. Artificial Intelligence 

The term AI can be divided into various techniques. These include 
machine learning (ML) and deep learning (DL). Reasons for the 
rising use of ML are the increasing amount of data in higher quality 
as well as the improved computing power at lower costs. 
(Goodfellow et al., 2016) ML enables computers to automatically 
learn patterns in data (Domingos, 2012). A decisive advantage is 
that a trained ML model can be applied to new data in the same 
structure without great effort (Goodfellow et al., 2016).  

ML is a basic form of applied statistics and can be divided into 
three categories of supervised, unsupervised, and reinforcement 
learning. These types of learning differ mainly in the required input 
information and the way in which models interacts and learns from 
data. For the following article the primary focus lies on supervised 
learning. Supervised learning, involves learning with different 
features of a dataset and are additionally provided with a label. The 
aim is to learn a function by minimizing the discrepancy between 
real and predicted values within the dataset. In contrast, 
unsupervised learning is used when the input data is not labeled 
and has no predetermined target values. (Goodfellow et al., 2016)  

DL is a method for information processing of large amounts of 
data based on ML. It describes a deep neural network, where the 
depth is determined by the different number of layers. There are 
various definitions about DL so the following section will describe 
how a neural network operates (Zhang et al., 2018). Objective of 
artificial neural networks (ANN) is to learn nonlinear relationships 
of input and output data. ANN consist of different layer types such 
as input, output, and hidden layers in between, which are 
interconnected. In the process of training, information is recorded 
in form of patterns which are finally weighted and evaluated in 
hidden layers according to their impact. This is repeated until the 
objective functions are minimized. During forecasting, data is fed 
through the networks to obtain a prediction. There are more than 
ten different types of DL techniques, which vary in different ways 
(e.g. complexity, type of neuron linkage, etc.) (Wang and Wang, 
2018). In the following section, three different DL architectures are 
shortly presented, which will be used to validate the approach. 

An often-used advanced technique of DL is the recurrent neural 
network (RNN), with its special implementation long-short-term-
memory (LSTM). Other architectures are convolutional neural 
networks (CNN) as well as multiple layer perceptron (MLP). LSTM 
works with time series data and uses hidden elements that enable 
inputs to be stored for a longer period of time. This, allows 
information from the beginning of the time series to influence a 
prediction (LeCun et al., 2015). An MLP will feed information only 
forward through the neural network (Goodfellow et al., 2016). It 
consists of fully connected layers which are able to process data. If 

the data is too big to process, filtering is required. This is why CNNs 
also use different layers such as the convolutional layer and pooling 
layer. Through these layers the number of connections is limited 
even with large input quantities (LeCun et al., 2015). Hence, this 
explains the main application in the field of image recognition.  

In addition to other advanced ANNs, there is also the possibility 
of developing an individual solution by combining different 
advanced DL techniques. Applications of ML and DL within 
production and logistics systems is described in the next section. 

2.2. Artificial Intelligence in production and logistics systems  

The application of AI within production and logistics systems has 
already been discussed in various literature reviews. (E.g. 
Woschank et al., 2020) mentions that the presented applications 
are often conceptual approaches or use cases in early development 
phase. In the next two sections, the relevant literature is reviewed, 
which focuses on the application of AI within planning and control 
of production and logistics systems. 

Many articles dealing with AI in production systems focus on the 
current state of the art using ML to support decision-intensive 
planning and control tasks (Usuga Cadavid et al., 2020; Wuest et 
al., 2016; Elbasheer et al., 2022). They often mention similar points 
like the data sources used for AI application, which are information 
systems such as enterprise resource planning (ERP) or 
manufacturing execution systems (MES). Further data sources 
include data from technical equipment and generated data e.g., 
through simulation models (Usuga Cadavid et al., 2020). With 
regard to production planning and control, these include process 
control and monitoring as well as intelligent planning and 
scheduling or automated optimization within production systems 
(Usuga Cadavid et al., 2020). A further key aspect within production 
or manufacturing processes is predictive maintenance. For 
example, (Cho et al., 2018) describes an hybrid ML approach for 
predictive maintenance by combining supervised and unsupervised 
learning in smart factories. (Ungermann et al., 2019) describe an 
approach how AI and the implementation of further sensors can be 
used to monitor and optimize technical equipment based on key 
performance indicators (KPI). 

Articles that focus more on logistics are often used to support 
planning processes or to predict future scenarios. (Knoll et al., 
2016) describe an approach to use ML within logistics planning 
tasks. The overall objective is to support inbound logistics planning 
by extracting knowledge of logistics processes to predict future 
scenarios. Other authors deal with the anticipation of disruptions 
within production logistics based on relevant KPI. They validate 
their AI models on a simulation (Vojdani and Erichsen, 2019). 
Another approach of (Knoll et al., 2019) shows an automated 
packaging planning approach by using ML to support the rough 
planning for different parts and load carriers and should help by 
determining the fill rate. (Uttendorf et al., 2016) describe an 
approach to automatically generate a layout for the use of 
automated guided vehicles with AI. Other approaches often focus 
more on building frameworks, describing abstract concepts for the 
future as well as review the current state of the art to identify 
further research activities (Li et al., 2017; Weichert et al., 2019). 

Literature shows that a number of AI approaches in the field of 
production and logistics systems have already been described and 
partially tested. However, the application of AI for manufacturing 
and logistics environments is still at an early development phase. 
Most applications often describe theoretical concepts or 



Rissmann et al. | 3 
 

 

 

approaches that have been prototypically tested. While the 
following approach is also a prototype, further steps are taken by 
being based on a real system with dimensioned and described 
processes. Hence, the following approach is closer to a practical 
implementation and aims to solve a specific problem. The aim for 
nearly all procedures is to solve complex problems that can hardly 
be solved or can only be solved with a great effort. Thus, supporting 
or automating decision-making processes with regard to planning 
and control. In addition, self-generated data e.g., from simulations, 
is often used to test AI models for production- and logistics-specific 
problems. On the one hand, despite the large amount of data 
generated in real processes, this is due to the fact that it is not 
available in the necessary quality or quantity. The use of AI to 
classify production orders with regard to the system's throughput 
has not yet been described, although it is to be expected that 
enormous efficiency potentials can be leveraged in the process of 
planning sequences of production orders. 

3. Approach to classify a production order based on a 
simulation model with deep learning  

In the following section, the approach developed with its 
components as well as the application within a use case is 
described. Afterwards the results of the use case and the findings 
are discussed. 

 

3.1. Key elements of the approach 

The required elements of the approach are presented in Figure 1. 
Key elements are: (1) a validated simulation model, (2) input data 
for the simulation model, (3) output data of the simulation model 
containing the desired KPI, and (4) a programming environment 
with AI clustering, data preparation, and DL. In the next section, the 
general approach is shortly presented.  

The initial situation resembles the connection to the real 
physical world. It is a real production or logistics system that 
obtains its production or transport orders from an information 
system such as enterprise resource planning (ERP) system, 
manufacturing execution (MES) and generates a system output. 
The productive operation with AI support describes the application 
of the trained AI model in a real production system. The AI training 
process consists of two parts. The simulation model is used to 
generate training and testing data for the AI model. It is particularly 
important that the results of the simulation model match the 
reality, e.g. the actually completed orders of a real production 
system, as much as possible. With the output data of the 
simulation, requirements for the AI model shall be defined. In the 
next step, the input data in form of features and labels are divided 
into different classes using clustering (e.g. K-Means, etc.). The 
classes should show how the utilized features influence the desired 
KPI. The training data generated needs to be preprocessed. Finally, 
a DL model is trained and if the predefined requirements are met 
the model is given into the productive operation. Otherwise a 
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Figure 1. Approach to classify a production order based on a simulation model with deep learning  
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feedback loop back to the creation of the DL model or even the 
simulation model is intended. In the following section the approach 
is explained in detail using an exemplarily use case.  

3.2. Use case 

In this section the previously mentioned approach is exemplarily 
implemented using a U-cell assembly line. The objective in this use 
case is to predict the KPI throughput in units. By classifying 
production orders into two categories (high and low yield) the aim 
is to increase the average throughput in units.  

The real production system used is a U-cell assembly line of a 
medium-sized company which is exemplarily set up in the 
Technology Centre Production and Logistics Systems of the 
University of Applied Science Landshut (Blöchl and Schneider, 
2016). In the considered system, floor rollers in six different 
variants (three colors and two different frames) are assembled in 
seven steps (Figure 2).  

As shown in Figure 2, a simulation model is built up in Plant 
Simulation which contains the entire value-added process. It is 
based on the real system, from goods reception to storage, 
transport to assembling, and finally to goods issue. The simulation 
model was validated with a Historical Data Validation by 
comparison of various KPI from the real system against the 
simulation model such as throughput in units, cycle time, etc. (Rabe 
et al., 2008). Due to the fact that the U-cell assembly line at the 
Technology Centre is used for educational purposes, the 
conceptual data as well as results of educational production runs 
are used for the validation of the simulation model. 
Random generated production orders, using the same structure as 
the production orders of the U-cell assembly line are used as input 
variables for the simulation model. The other areas such as goods 
reception, storage, transport, and goods issue only influence the 
simulation model indirectly through request of the assembly line. 

At the beginning, a set of 5,000 random production orders 
which corresponds to 5,000 working days is generated through 
numpys random.choice algorithm and prepared to test the 
functionality of the DL architecture. For this purpose, 4,000 
production orders are used for training and 1,000 for testing the 
model. The variants within a production order are distributed by 
color as follows: 60% for high runners, 30% for middle runners, and 
10% for least runners. All six different variants were randomized, 
considering their distribution within the production orders. Each 
production order was limited to 751 units, as this is the maximum 
output quantity of the assembly line each day. Every simulation run 
corresponds to one working day with sixteen hours of working 
time. The resulting amount of possible production order 
combinations is show below: 

751!

450! ∗ 225! ∗ 75!
≈ 7,94 ∗ 10289 

The initial approach was to use regression algorithms. Probably 
due to the large number of features (751) classic regression 
algorithms as well as (deep) neural networks struggle to identify 
patterns in the data. Due to these findings a two-step procedure 
that starts with clustering the data and afterwards classify them, 
was selected. Hence, the results of the simulation model are 
clustered into five classes using K-Means. Based on the result of the 
clustering, the label throughput in units is substituted for the 
classifying task at hand. The four clusters with lower yields are 
further grouped together. Thus, the classification model has to 
distinguish between the two classes of high and low yield. This 
helps to increase the prediction accuracy of the model used in the 
next step. The separation between high and low yield is found at 
722 units with the average throughput in units of 709 and is 
displayed in Figure 3. As shown in Figure 1 it is necessary to define 
the requirements for the results in order to evaluate the final AI 
results. With regard to the present problem, the requirement is to 
reach an accuracy of 75%. This means that three quarters of the 
production orders should be correctly classified. The average in the 
high yield class is at app. 742 units and the low yield class at app. 
665 units. With the desired accuracy set to 75% it is expected that 
the average throughput in units to be at 723 units. This will bring 
the average throughput over the separating 722 units. Hence, the 
output in the productive system should always be high yield. 

Figure 3. 1,000 randomly sequenced production orders with two classes clustered by 
K-Means used for testing 

In the following step data preparation, different sample and 
augmentation techniques are used. Furthermore, feature 
engineering (FE) is conducted. As the original dataset contains 751 
features which are seemingly of equal importance feature 
engineering was applied. During feature engineering the 
production order was splitted into sets of varying numbers of 
products. For each set the four following metrics were used: 
dominant color, longest continuous occurrence of the dominant 
color, dominant frame, as well as the longest continuous occurrence 
of the dominant frame. The four sets are used because of the 
following assumptions. The color belonging to products of the least 
runner category have a negative impact on the target throughput 

Figure 2. Representation of the used U-cell assembly line simulation model  

Datasets
Varying numbers

of products
Combination of

different DS 
Prescaled

Number of
features

DS 1 30 units No No 55

DS 2 15 units No No 115

…. …. …. …. ….

DS 5 1 unit No Yes 751

…. …. …. …. ….

DS 13 1 unit DS 1, DS 2, DS 3, DS 4 No 1518

DS 14 1 unit DS 1, DS 2, DS 3, DS 4 Yes 1518

Table 1. Base datasets used with the resulting number of features 
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in units. The same applies for frames. A similar impact for a 
continuous chain of equal products is expected. This was done to 
improve model performance. As a result, 14 base datasets (DS) 
were created as shown in Table 1. 

 Furthermore, combinations of different datasets were utilized 
to extend the number of available datasets. For selected datasets 
prescaling was applied. In the process, the original values are 
manually scaled to a range between 0 and 1 which is more suited 
to a neural network. The base datasets were consequently 
combined to generate 84 different datasets. This was done by 
applying principal component analysis (PCA), scaling and 
normalization as displayed in Table 2. Afterwards the data is 
randomly divided into a training and test dataset. 

 

Table 2. The 84 datasets including data preparation 

 

As mentioned in section 2.1 there are numerals DL architectures 
available. For this use case a LSTM architecture was selected due 
to the information implicitly given by the sequence of production 
orders. As the data available might contain a lot of unnecessary 
information filtering can be beneficial, hence CNN are chosen. 
Furthermore, an MLP was picked for control reasons as it is not as 
computing intensive and is easier to apply.  

Figure 4 shows the best datasets (DS 5) as well as its variations 
tested against a simple CNN. It can be noted that the lines visible at 
the beginning at 0.41 as well as 0.59 resemble a neural network 
prediction of only one class. Exceeding this threshold (0.41 - 0.59) 
the neural network performs a prediction on both classes.  

 
Figure 4. CNN performance on the 14 base datasets 

Testing was done for all 84 different datasets, which were 
compared against numerous variations of the three chosen ANN 
architectures. The best performing networks for each category 
(CNN, LSTM, MLP) were selected for further hyperparameter 
tuning. Furthermore, the best dataset was selected (Figure 4, DS 5). 

Final adjustments to the neural network are carried out during 
"hyperparameter tuning". In this step each component ranging 
from hidden layers sizes to activation functions and solvers such as 
"Adam" or "Stochastic gradient descent" (SGD) can be individually 
fine-tuned. 

At this point, the chosen AI model, which has been extensively 
tuned is trained on the selected dataset. After training, the model 
is used on the still unknown data contained in the test dataset. To 
check the AI result, various metrics can be used. The following 
metrics are important for classification: "recall", "precision", "f1-
score", and "accuracy" (Sammut and Webb, 2010). "Precision" 
value indicates the rate of true and false positive predictions for all 
positive values. With the "recall" value, the ratio of true positives 
and false negatives is described. "F1-score" is defined by the 
balance between "precision" and "recall". "Accuracy" describes the 
ratio of correctly classified predictions. It is essential that the 
different metrics for both classes are as equally pronounced as 
possible. Thus, both classes can be predicted identically. The results 
applying the approach presented are described in the section 4.  

Further, the developed AI model is implemented in the 
productive operation. Here, a production order sequence is given 
by the planning and control system of the real production system. 
The production order sequence is classified by the developed AI 
model and accepted if a high yield is predicted. If a low yield is 
predicted the production order sequence is rejected and a new one 
has to be created.  

4. Results 

The first approach aims to predict the throughput in units with 
advanced deep learning models such as LSTM and CNN. It was 
possible to achieve results with an accuracy of approx. 60% already 
at the beginning. However, to achieve even better results, the data 
preparation was optimized with feature engineering and PCA. 
While the CNN architecture required only scaling of the input data, 
the MLP architecture additionally required FE for its best score. For 
the LSTM network scaling, FE, and PCA was necessary. The results 
for each architecture tested as well as the data preparation used 
are displayed in Table 3.  

A CNN was found to be the best performing. This CNN consists 
of eleven layers and has 598,421 trainable parameters. A maximum 
"accuracy" of 86% is obtained with a "precision" of 90% for the high 
yield class (1). Furthermore, 85% of the given production orders are 
correctly classified in the low yield class (2). It has to be mentioned 
that the accuracy reached by the CNN is higher than the LSTM 
architecture and it requires significantly less data preparation 
(Table 3).  

 
Table 3. Results of the best deep learning classification models for each type for both 
classes high (1) and low (2) yield 

 

 

Datasets PCA Scaling Normalization

- PCA (0.96) StandartScaler() MinMaxScaler()

1-14* No No No

15 - 28 Yes No No

29 - 42 No Yes No

43 - 56 Yes*2 No No

57 - 70 No No Yes

71 - 84 Yes No Yes

*Original dataset

Architectures Precision Recall F1-score Accuracy FE PCA Scaling

CNN (1) 0.90 0.86 0.88
0.86 Yes Yes Yes

CNN (2) 0.82 0.88 0.85

LSTM (1) 0.82 0.83 0.83
0.80 No No Yes

LSTM (2) 0.77 0.77 0.77

MLP (1) 0.69 0.78 0.73
0.68 No No Yes

MLP (2) 0.67 0.55 0.60
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Based on the results, the approach is able to identify the high 
and low yield class with a high probability. In order to verify the 
approach presented, the trained AI model is implemented in the 
productive operation. 1,000 productions orders (Figure 3) are 
classified by the AI model. The production orders that are classified 
as high yield with its corresponding throughput in units are shown 
in Figure 5. As displayed the average throughput in units is at 736 
which is 27 higher than the none AI classified production orders 
(Figure 3). Furthermore, the desired throughput of 723 units has 
been exceeded. These results confirm the successful application of 
the approach to classify production orders with a deep learning 
architecture. 

 
Figure 5. 570 pre-validated production orders with the original classes  

5. Discussion  

The following section considers the strengths and weaknesses of 
the approach. The application within a use case demonstrates that 
production orders can be classified with regard to the resulting 
throughput in units by using DL. This enables a faster decision on 
the production orders, which can increase the efficiency of a 
production system without additional costs by further resources. In 
a hypothetical scenario between a simulation- or AI-based 
approach the decisions about the production order can be sped up 
by a factor of 2,000. This is based on the fact that in the presented 
use case a complete simulation run of one working day takes 40 
seconds while a single classification requires 0.02 seconds. With 
these results and the stated limitations (e.g. distribution of 
variants, etc.), the research question can be answered as follows: 
Within the use case utilizing the approach presented, production 
orders can be classified by a CNN with an accuracy of 86%. The 
aforementioned neural network is able to increase the average 
throughput in units by 27 products per working day. In summary, a 
DL model is able to classify a production order sequence with 
regards to the system's throughput. 

A significant advantage of the approach is that by using a 
simulation model the available training data can be increased 
enormously. In the use case discussed 4,000 working days were 
simulated. It is important to noted that during these simulated 16 
years of work no changes except the production sequence were 
made. In comparison a real production system continuously 
encounters changes.  By utilizing a simulation model less frequent 
occurrences can be included in the training data. This allows the AI 
model to handle such events better.  

Nevertheless, there are still some limitations. First of all, it 
should be mentioned that challenges like overfitting proofed 
difficult to overcome. It has to be noted that in a real production 
system the sequence of production orders is not chosen randomly 
due to different restrictions. However, this should neither influence 

training nor the application in the productive operation. Further 
investigations should demonstrate how the developed approach 
reacts to randomly occurring problems in production and logistics 
systems (e.g. failures, downtimes etc.). While only the classification 
of throughput in units was validated, other key performance 
indicators, such as predicting the completion time of individual 
units or the throughput time, needs to be tested. For this purpose, 
the data basis may need to be enlarged.  

6. Conclusions and outlook 

In this article, an approach is presented to classify production 
orders with an advanced deep neural network based on a 
simulation model. The aim is to classify production orders 
sequences that lead to a higher throughput in units.  

For this purpose, production orders were simulated and the 
corresponding throughput measured. The generated data was 
clustered with K-Means and used to create a new dataset. This 
dataset was consequently utilized to train a deep learning 
classification model. The findings show that artificial intelligence 
models are capable of solving complex issues with a very high 
number of different possible combinations, which can only be 
answered by optimization algorithms with enormous effort. 
Furthermore, the developed approach in combination with the 
created AI is able to provide results in a shorter time and with 
sufficient quality. This is a first approach and further research is 
needed. In terms of application with a simulation model, future 
research should emphasize on dealing with the inaccuracies in the 
simulation model in combination with the AI model. These 
inaccuracies carry the potential to multiply if combined. With 
regard to the stated problem, future work should focus on a 
comparison with existing approaches to production order 

sequence optimization. 

In future research activities, the approach presented should be 
tested on a production system with real production orders to gain 
further insights to improve the approach. Furthermore, the 
approach should be compared to other surrogate modeling 
techniques. 
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