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Abstract 
The importance of cross-process multivariate data analysis for improving products and processes is continuously increasing. 
Artificial intelligence and machine learning offer new possibilities to represent complex cause-effect relationships in models and 
to use them for optimisation. For consistent and scalable usage, unified data structures and representations of products, 
processes and resources are required in order to be able to use larger data populations as well as deploy these models in different 
application contexts. The paper presents an approach of shared prediction models for recipe optimisation based on unified digital 
twins in the beverage industry. For this purpose, a central generic data model was created, which is the basis for unified digital 
twins and thus the integration of physical and digital entities, as well as the foundation for cross-process data analysis. 
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1. Introduction 

In a globalised world, food and beverage manufacturers 
are confronted with rising costs for energy, resources 
and wages as well as diverging customer and ecological 
requirements. Existing optimisation paradigms are 
increasingly reaching their limits, as simple cause-
and-effect relationships are usually analysed from 
production perspective and customer demands are 
assessed on the marketing side without closing the loop 
to the shopfloor.  

On the other hand, digital twins (DT) as the basis for 
concepts like Industry 4.0 or the Industrial Internet of 
Things (IIoT), offer new possibilities for intelligent data 
usage in the food and beverage industry (Schmitz & 
Hagemann, 2020). Approaches of artificial intelligence 
(AI) based on machine learning (ML) methods offer new 

possibilities for building multivariate prediction 
models in order to optimise recipes regarding 
productivity indicators and customer requirements, 
and provide the ability to test recipe changes before 
producing them (Robinson & Dehbi, 2021). The main 
challenges are a lack of data availability and quality, 
creating deployment-oriented ML architectures and 
the scalable usage of models within applications and 
services (West et al., 2021; Wöstmann et al., 2020). In 
the present case of the beverage industry, the problem 
relates to the fact that individual data silos for the same 
or similar processes exist in particular, but are not 
merged and used across locations. Integrating data 
silos across locations and value chains can significantly 
increase the quality of models and in some cases make 
application scenarios possible in the first place. 

The authors present an approach to use shared 
prediction models across locations based on unified 
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DTs in order to optimise recipes. The approach uses 
data on the product ingredients, performed processes 
and customer feedback on the final product. Section 2 
introduces existing work on cyber-physical systems, 
DTs and ML as well as recipe optimisation. Section 3 
contains the concept for building unified DTs for recipe 
optimisation across locations, the implementation of 
which is presented in section 4. 

2. State of the art and related work 

2.1. Cyber-physical systems and digital twins 

Increasingly cost-effective sensors and data storage 
technologies, embedded systems, new possibilities for 
data analysis and simulation, communication 
standards and cloud services are the main enablers for 
building cyber-physical systems (CPS) (Derler et al., 
2012). A central element of CPS is the DT that on the one 
hand is specified from product, process and resources 
viewpoints and on the other hand, contributes to 
standardisation activities like the asset administration 
shell (AAS) (IEC 63278-1 ED1), digital factory framework 
(DFF) (IEC 62832-1:2020) or equipment behaviour 
catalogues (EBC) (ISO 16400-1:2020). A further 
differentiation is made in the integration of data and 
information flows. As shown in Figure 1, precursors of 
a DT are the digital model with a manual data flow 
between physical and digital objects, and the digital 
shadow with an automated unidirectional data flow 
from the physical to the digital object (Kritzinger et al., 
2018). In the context of this work, the DT is defined as a 
digital, dynamic representation of real products, 
processes and resources with an automated data flow 
between physical and digital objects (Fuller et al., 
2019). In the beverage industry, implementation has so 
far only been based on individual machines or 
processes (Perno et al., 2022) or supervising value 
chains (Werner et al., 2021). There is currently a lack of 
comprehensive data linkage of different processing 
steps along the process chain as well as feedback of 
analysis and modelling results to enable holistic data-
driven product and process optimisation. 

 
Figure 1. From digital model to digital twin (Kritzinger et al., 2018) 

2.2. Artificial intelligence and machine learning 

Machine learning as a subset of AI offers vast potential 
in the data-driven analysis and explication of 
multivariate cause-effect relationships in large cross-
process data sources (West et al., 2021). A distinction 
can be made between supervised ML methods in which 
the result of an observation (so-called label) is known 

(e.g. classification and regression), unsupervised ML 
methods in which the result is unknown (e.g. clustering, 
association analysis, dimension reduction), semi-
supervised ML methods if a label is available for parts of 
the observations, and reinforcement learning, in which 
an agent learns a strategy independently from 
historical and new data sets based on rewards for 
actions (Alpaydin, 2020). (Ge et al., 2017) provide an 
overview of the most commonly used ML methods in 
the process industry. In particular, supervised methods 
are suitable for making inferences about causes and 
thus for initiating recipe adaptations. There are 
numerous applications for specific process steps, but 
there is no systematic application across the process 
chain. Also, the concept of transfer learning is of 
interest, as it consists of applying models to different 
framework conditions (e.g. analogue products or 
processes). Unsupervised and semi-supervised learning is 
primarily used for anomaly detection. Reinforcement 
learning applications in the industry are still in the early 
stages, but emerging (Xia et al., 2021).  

At the implementation level, ML requires the use of 
appropriate frameworks and platforms that must 
harmonise with existing IT systems. The market for 
concrete solutions is diverse and complex. On the one 
hand, there is a tendency towards open programming 
languages like Python and R. On the other hand, 
graphical programming interfaces and data science 
platforms like RapidMiner are becoming increasingly 
important, as they offer easy access for those without 
data science expertise. In addition, hyperscalers like 
Amazon (AWS/Sage Maker), Microsoft (Azure Machine 
Learning) or Google (Vertex AI or TensorFlow) offer 
comprehensive frameworks (Grum et al., 2020). A 
reference architecture for ML in the process industry 
was developed in the DaPro research project, which 
assists users in the selection and design of ML 
frameworks and infrastructures while building on 
existing IT landscapes in companies (Wöstmann et al., 
2020). 

2.3. Data-driven recipe optimisation 

In general, in the food and beverage industry, various 
reactants are converted into products through processes. 
Whereas in discrete manufacturing technical drawings 
and bills of materials describe products, in food and 
beverage industry this information is stored within 
recipes. The recipe model of ISA-88 resp. (IEC 61512-
1:1997) is the leading international standard and 
defines a recipe as "the necessary set of information that 
uniquely defines the production requirements for a specific 
product”, specified in the four types of general, site, 
master and control recipes. Recipes thus describe both 
products and their processing route. 

Existing approaches to recipe optimisation 
primarily address quality and productivity indicators, 
e.g. higher outputs with minimised use of resources or 
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increased process stability. However, data-driven 
approaches have so far only considered simple 
statistics to be used as soft sensors, without focusing 
on a predictive multivariate model application (Ge et 
al., 2017). First approaches of using ML are emerging, 
but they rarely get into deployment. The most common 
problems are inconsistent data structures and poor 
data quality. In addition, often only isolated data silos 
are evaluated, resulting in individual use cases whose 
initial effort does not scale (West et al., 2021). 

In a second model-driven research area, simulation 
models are used to predict reactions and results of 
processes, e.g. (Ban et al., 2021; Garrido-Merchán & 
Albarca-Molina, 2018). Here, simulation methods are 
based on known interrelationships and behavioural 
modelling approaches. Weaknesses are long 
calculation times and a lack of adaptability to varying 
conditions within the deployment in practice. In 
addition, they neither address the discovery of complex 
unknown patterns and relationships nor are they 
applied across process chains with the integration of 
the customer. 

In a third field of related work, marketing 
departments carry out customer analyses in order to 
recognise market trends and to convert them into 
product features (Tarallo et al., 2019). Numerous start-
ups such as IntelligentX or BRAUERAI are currently being 
formed for this purpose (Brewer World, 2020). They 
represent the largest overlap to the presented 
approach, but do not provide direct control loops to 
machine and plant parameters nor adaptable solution 
patterns for the industry.  

The present approach contributes to mapping the 
entire process chain from the customer via the 
production processes to the ingredients downstream 
using digital product, process and resource twins, to 
use them for collaboratively recipe optimisation. 

3. Concept of digital twin for recipe 
optimisation 

As described in section 2 a DT can have different 
manifestations relating to its context. Commonly it 
consists of the three components physical (PE) and 
digital entity (DE) and their interconnection, that are 
enlarged in recent research to five components, adding 
DT data and applications (often related as services) (Tao, 
Nee, & Zhang, 2019). The requirements for the DT 
define the scale and extent to which the PE is 
considered. A first decision addresses the hierarchical 
level (Tao, Zhang, et al., 2019). Recipe optimisation can 
be an overarching task at enterprise, site or process cell 
level, but also lead to interference in unit, equipment or 
control modules of ISA 88. Therefore, a DT can consist of 
various sub-models, for which the interaction and 
dependencies have to be considered. EBC and AAS 
provide generic possibilities of describing equipment 
and asset compositions and capabilities. Figure 2 shows 
the general concept of the presented approach. In this 

section, the individual components are discussed in 
more detail for recipe optimisation and the possible 
manifestations of these entities. 

3.1. Physical entity 

The PE represents all relevant elements of the physical 
world. For the recipe optimisation, the focus is on 
products (e.g. ingredients and the final product), 
processes (e.g. procedures, reactions and process 
steps) and resources (e.g. asset and equipment). The 
product and process to be optimised takes place in an 
asset and is performed with equipment, which are 
summarised as resources. An asset can carry out several 
processes by varying equipment or process parameters. 
Since the processes have a dependence among 
themselves, all processes, which are accomplished by 
this asset belong also to the consideration on unit level. 
In addition, the resources that are made available to the 
asset for the execution of the process and the product 
that is created by the process belong to the unit on this 
observation level. 

The characteristics of the product range from 
biological ingredients as in the food and beverage 
industry, to chemicals in the chemical industry, to 
mineral raw materials in the steel industry, but 
combining a batch-oriented processing. Intermediate 
products from other processes can also be a part of a 
final product. The process is mapped in the DE by 
bringing together the accumulated knowledge about 
the process and a correct process execution. This 
includes all the individual process steps that represent 
the process as a whole, the ingredients required for it as 
well as characteristics of a final product. The recipe 
optimisation addresses processes as well as associated 
products, conducted by resources. Therefore, an 
adequate mapping has to be considered by creating a 
DE. 

3.2. Digital entity 

The DE can be based on simulation software and 
shopfloor IT systems, that represent product, process 
and resources in digital models. In the food and 
beverage industry, processes have many complex 
influencing variables from causes to effects, leading to 
a large history of simulation and automation systems. 
A general distinction can be made between simulation 
approaches for product and process engineering as well 
as shopfloor IT systems for running production 
systems (prostep, 2019). Also external supplier or 
customer data can be part of the DE of a product. All of 
these models can, but do not necessarily have to, 
represent part of a DT.  
 

Geometric models consider geometrical dimensions of 
the DE, e.g. two- and three-dimensional technical 
drawings. In process industries, these models can be 
used to plan operations before a process is carried out, 
so that equipment is correctly dimensioned, including 



 34th European Modeling & Simulation Symposium, EMSS 2022 
 

 

 

piping and instrumentation. Other simulation methods 
address the physical or behavioural simulation of 
production processes. Examples are computational 
fluid dynamics (CFD) or thermodynamically 
simulations (Bröckner et al., 2021). For a more in-depth 
review of simulation tools and their application to DTs, 
see (Longo et al., 2021). 

While numerous simulation and modelling 
approaches are applied in experimental product 
development and the early stages of production system 
planning, the shopfloor IT provides the second pillar of 
the DE. Based on the automation pyramid of the ISA 88, 
the systems are usually hierarchically structured and 
go from the programmable logical controllers (PLC) for 
the direct control of actuators, including high 
granularity information and data points over to process 
control systems (PCS) and manufacturing execution 
systems (MES), in which key figures for reporting are 
aggregated and control tasks are taken over 
(Wöstmann et al., 2020). There are also parallel 
systems for manufacturing data acquisition, laboratory 
information management system (LIMS), batch 
management, logistics and enterprise resource 
planning (ERP), which have different perspectives and 
subcomponents on the product, process and resources 
in real production and therefore use different data 
models. The multitude of modelling methods of 
product, process and resources as well as their 
underlying systems and data management make it 
impossible to postulate a universal definition and 
implementation of the DT. The following section 
therefore presents a data model for the DT for recipe 
optimisation, which serves to harmonise the required 
data across locations for using shared prediction 
models. 

 
Figure 2. Technical concept of unified DT for shared prediction 
models 

3.3. Digital twin data model 

In the context of data-driven recipe optimisation, it is 
required to specify the data for the desired DT 
viewpoint. Important recipe data can be classified into 
planned and measured data about product, process and 
resource. 

The planned recipe data can be derived from the 
recipe model of ISA 88, which introduces four 
hierarchical recipe types with general, site, master and 
control recipes from enterprise, site, process area to 
process cell. The (IEC 61512-2:2001) contains data 
models for the standardisation of interfaces in batch-
oriented processing. Unique recipe and batch IDs are 
important, however, there are degrees of freedom in 
the definition of parameters. Information on the plant 
and its equipment is stored in the asset data, which can 
include dimensions, location, connections and 
equipment behavioural capabilities. Data about 
installed sensors and units are also part of a 
hierarchical DT representation (Barthelmey et al., 
2019) . 

Within the presented approach, measured data 
include time series of processes as well as product 
samples, both based on sensors. Sensor data on product 
and processes as well as equipment conditions 
represent the DT at any time. All execution steps that 
are carried out by humans must also be documented 
and stored. Data about the product can be product 
specific, but also contain batch information. Product 
data include laboratory values, shelf-life data, key 
figures from tests or other parameters that 
characterise the product and its ingredients. These data 
can be measured or determined by the manufacturer or 
provided by suppliers, e.g. via outbound analyses.  

A generical data model is presented in appendix A 
(cf. Figure 7) for describing required data for recipe 
optimisation in a unified structure. In each case, it has 
to be mapped with existing IT structures as well as a DT 
database for unified data acquisition. SQL databases are 
suitable for all types of structured data. For semi-
structured or unstructured data (e.g. images or files), 
other forms of storage must be chosen. In order to map 
existing IT systems and databases to the DT data 
model, the next section addresses the connections 
between the DT elements.  

3.4. Connection 

A technical implementation has to take care of the 
interconnection of assets and the connectors that 
translate the perception and manipulation of the PE to 
the DE (cf. Figure 2) as well as applications and services 
(section 3.5). On a local level the task is usually covered 
by the domain of automation technology. Now, 
however, considering the increasingly distributed 
nature of IT infrastructure, which can also host the DT, 
responsibility is shifting towards the domain of IIoT 
(Heidrich & Luo, 2016). Leveraging IIoT technologies 
allows unique addressing of individual models and 
services of and by the DT in near real time, negating 
eventual physical distances between assets and 
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services hosted in cloud-environments in various 
industrial contexts (Schmitt et al., 2020). 

For this interconnection, all layers of the OSI model 
(cf. Haupt, 2020) need to be addressed. While physical 
and transport layers are standardised in the industrial 
context (e.g. by IEEE 802.3 & .11, IP and TCP/UDP), 
technologies addressing the machine-to-machine 
(M2M) communication in the application layers are 
transitioning away from proprietary protocols to 
standardised, partially open-source alternatives such 
as OPC UA or MQTT. Also, more unspecific IT-related 
protocols and application programming interfaces (APIs) 
found in classical "web-stacks" such as WebSocket or 
REST can be utilised where resource and bandwidth 
allows (Al-Fuqaha et al., 2015). Combined with efforts 
to the likelihood of AAS, DFF and EBCs, this allows a 
manufacturer-independent, demand-based link of 
assets and services, optionally also including 
additional enterprise IT such as ERP or MES, where PE 
and DEs are equivalent and interchangeable. 

There is an abundant supply of standardised 
protocols for M2M-communication in the IIoT, 
covering both long existing (e.g. Siemens TCP on top of 
RFC 1006 or Modbus) as well as new ones like 6LoWPAN, 
addressing the specific needs of IIoT networks on all 
OSI layers (cf. Arndt, 2018). This abundance currently 
complicates construction, commissioning and 
reconfiguration of CPS, suggesting a necessary 
concentration on the utilisation of unified, well-
established openly available protocols and interfaces to 
ensure easy interoperability of entities (cf. Pethig et al., 
2017). Perceived as particularly well established are e.g. 
the Message Queuing Telemetry Transport-Protocol 
(MQTT) and OPC UA, standardised in (IEC TR 62541-
1:2020), which unifies M2M and human machine 
interface (HMI)-communication, abstracting the 
complete information model. Furthermore, there are 
standards also addressing the physical levels such as 
IO-Link (IEC 61131-9:2013) and Bluetooth Low-Energy 
(BLE). REST-based implementations like the 
Constrained Application Protocol (CoAP) close the arc to 
"classical" web-protocols. These can and should be 
used for application-related communication purposes 
like database interactions and UI/UX. Furthermore, 
there are also XML-based protocols for more complex 
data like XMPP or AutomationML. (Ahrend et al., 2019; 
Al-Fuqaha et al., 2015; Barthelmey, 2021) 

Combined, these approaches and technologies allow 
an interoperable IT architecture to ensure secure and 
targeted delivery of relevant data as well as the easy 
development of new features, functions and models in 
the context of DTs. 

3.5. Applications and services 

To create value, a DT has to provide applications and 
services for decision-making, e.g. intelligent 
production planning, anomaly detection, quality 
prediction or process control. As shown in Figure 1, the 
goal of a DT is a closed loop between PE and DE. 

Applications addressing recipe optimisation of the PE 
are mainly concerned with controlling or optimising 
the processes and product composition, based on data 
sources building the DE. 

Also, simulation methods can be the base for 
applications and services, when integrated in closed 
loops. A disadvantage is the focus on specific 
simulation tasks and high computing times, which 
make rapid deployment across process chains and 
multi-dimensional problems difficult. For this reason, 
the presented approach proposes the use of ML as basis 
for the application layer. It offers the following 
advantages: First, complex multivariate patterns and 
correlations can be obtained cross-process based on 
historical data from the PE with large amounts of 
influencing factors. Second, the underlying methods 
and procedures are able to represent knowledge in the 
form of statistic models, that can provide readable 
outputs for both humans and machines. Third, ML 
offers great advantages in deployment applicability 
and can be provided (e.g. encapsulated as services) in 
different ecosystems. In this context, first, the 
technical design of an ML environment is important, in 
which different DTs can be managed in unified 
structures. (Wöstmann et al., 2020) provide assistance 
for the architectural design. Second, a major challenge 
is the deployment up to the triggering of events. Models 
and their outputs must either be made available to the 
employees in such a way that they can generate added 
value in the operational work, or interact directly with 
the technical control (e.g. mixing ratios in the MES or 
adaptive process control at PCS or at PLC level). 
Another challenge is the continuous monitoring of 
performance and quality metrics of the models as well 
as the closing of ML control loops, e.g. re-training of 
models when new, larger data sets are available. Here, 
new research disciplines are emerging around MLOps, 
for which technical solutions are also to be provided in 
the ML environment (Renggli et al., 2021). In addition, 
a suitable business model must be established. Within 
larger companies, this could be, for example, cross-
location production networks in which assets of the 
same or similar type learn from each other. On the 
other hand, there are efforts by machine and plant 
manufacturers (e.g., Syskron in the beverage industry) 
to manage similar assets of their customers in digital 
platforms and to provide data-driven services. While 
Figure 2 summarises the technical concept, the 
following Section 4 presents an exemplary case study 
in the brewing industry. 

4. Data-driven recipe optimisation in cyber-
physical brewing labs 

The case study consists of two identical cyber-physical 
pilot breweries located in Dortmund, Germany and 
Sydney, Australia. The aim is to predict and optimise 
the quality of the product beer, which is assessed by 
sensory analysis in human tasting. Within the process 
chain of brewing, numerous multivariate influencing 
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factors arise on the final product. In the following, the 
paper demonstrates how unified data structures and 
models in the context of the DT constitute the basis for 
shared prediction models and their application for 
recipe optimisation. While Figure 3 gives a 
representation of the PE in Dortmund, Figure 4 
provides an overview of the case study. 

4.1. Physical entity of the case study 

The PE consists of all products, processes and resources 
that can have an impact on the final product quality. 
The cyber-physical brewing assets consist of 
respectively one Ziptech NANO brewhouse of 0,5 hl and 
three fermentation tanks with a capacity of 1,2 hl each. 
Each asset carries out brewing (mashing, boiling, 
lautering, whirlpool) as well as fermenting and 
maturing processes. The brewhouse consists of two 
boilers, an HMI to control the asset, a pump and a 
piping system. In addition, temperature, flow and 
volume sensors are installed for condition monitoring 
and automation. The fermentation tanks also provide 
temperature sensors and a cooling unit for temperature 
control. 

 

 
Figure 3. PE of the cyber-physical brewing lab in Dortmund. An 
identical system exists in Sydney. 

 
Figure 4. Overview of the case study of shared prediction models for 
recipe optimisation in cyber-physical brewing labs 

The product is beer, which is characterised by its 

ingredients and processes, that are formalised in a 
recipe. There are numerous works on quality 
assessment of separate indicators, which address the 
influence of selected attributes on specific quality 
figures. For this purpose, the test criteria for beer of the 
German Agriculture Society (DLG) were used, which in 
the form of a so-called sensory analysis (tastings) 
include foam stability, clarity and smell as well as the 
taste parameters of full-mouth feel, freshness and 
bitterness impression (Narziß et al., 2017). Since the 
authors brew according to the German purity law, the 
ingredients consist of hops and malt of different types 
and mixing ratios as well as yeast and water, which can 
be varied in quantity in the case study. Malt is the most 
expensive ingredient and is available in many different 
varieties. Hop is very important for the quality, foam 
and taste of the beer. While hop acids influence 
bitterness and freshness, the ethereal oils from aroma 
hops have a major influence on the flavour profile. 
Yeast is of high importance, since it converts 
fermentable sugars into alcohol and produces 
numerous fermentation side-products, which 
contribute to the flavour profile as well. The following 
section describes how the physically existent products, 
processes and resources are digitally represented. 

4.2. Digital entity of the case study 

In order to map the PE to a DE, various IT systems are 
required. Within the brewing assets, the PCS Zipmatic is 
the central system for defining control recipes, 
controlling the automated brewing processes, as well 
as performing condition monitoring and process data 
acquisition. Aggregated process and asset data are 
stored locally in a PostgreSQL database of the PCS in 
each location. Higher resolution and more direct access 
to process data is provided by a Simatic ET-200EP PLC, 
which is controlled by and returns information to the 
PCS. Since the PLC only communicates bidirectional 
with the PLC in its original state, but does not have its 
own database, an edge device was implemented to 
collect raw data of the asset.  Furthermore, in the 
delivery state of the plant, the fermentation process 
cannot be measured. Therefore, another external 
sensor (Tilt Pro Hydrometer) was installed, which 
continuously measures the respective density from the 
tilt angle. The data is stored in Google Spreadsheets 
using the edge device. 

On the product side, the data acquisition is 
heterogeneous. Each manufacturer of yeast, hops and 
malt provides different product sheets and laboratory 
analyses in .pdf format. In addition, various 
measurement processes for intermediate products take 
place in the brewing process. They include, among 
others, an iodine sample, but also density 
measurements (e.g. original gravity, kettle full wort, 
malt wort, ...) using an Anton Paar EasyDens, which 
enables to export samples as .csv files from the 
corresponding application. For the integration of the 
heterogeneous product data, a LIMS with a user 
interface (GUI) was created that enables the manual 
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product data creation as well as the linkage with the 
brewing process.  The product data of the DE are 
completed by the final quality assessment through 
sensory analyses. The data for the tastings is 
systematically stored on the Microsoft Forms platform.  

4.3. Digital twin data model of the case study 

In order to unify DE's heterogeneous data landscape in 
terms of required data and provide the basis for shared 
prediction models, a DT data model was specified based 
on the data model presented in Section 3. It is presented 
in the appendix A in Figure 8. It forms the basis for two 
implementation approaches of data management and 
distribution. On the one hand, a relational MariaDB is 
used to capture all product and batch-related data as 
the backbone for the DT product data. On the other 
hand, an influxDB is implemented for the time series 
acquisition of the DT process data. 

The database schema derived from the data model 
includes individual tables and connections between the 
tables. The product, in this case the beer, is at the centre 
of the data collection. Each beer has a name and a 
unique ID. Each brewing process is only used for one 
beer, so the ID of the beer can be stored directly in the 
brewing process and the relationship between beer and 
brewing process can be established. In addition, a 
fermenting process can be assigned to each beer and 
each fermenting process can be uniquely assigned to a 
beer. The ID of the beer can therefore also be stored 
directly in the fermenting process. The quality 
characteristics of the beer are also recorded and can be 
uniquely assigned to each beer via the stored beer ID. 
All other tables were linked to the product according to 
the same principle.   

AWS has been selected as cross-site and unified 
platform. Here, both unifying databases as well as the 
ML environment for implementing recipe optimisation 
services are hosted. For creating and using shared 
prediction models, the collaborative data science 
platform RapidMiner AI Hub was selected. In the 
following section, the connections are presented in 
more detail. 

4.4. Connection of the case study 

The architecture of the brewing lab demands the ability 
to connect various entities to collect both planned and 
measured product, process and resource data (ref. 3.3), 
spread widely in geographical terms. The choice of 
methods of connection was, next to the given 
opportunities by the physical assets, driven by 
compatibility and open availability. The brewhouse 
asset with the fermentation tanks already utilise OPC 
UA for communication purposes between PLC and HMI, 
however warranty and security concerns prohibited 
direct manipulation or interference with internal 
communication.  

The physical data acquisition thus had to be delegated 
to a dedicated edge device, which can also handle 

additional connections to external sensors such as Tilt 
Hydrometers. It is possible to employ a vast selection of 
low-cost development boards such as Nvidia Jetson or, 
in this case, Raspberry Pis for this. Its main task is to 
physically connect to the PLC and additional sensors 
and act as a gateway to global network and the AWS 
cloud-instance. The devices are securely managed 
remotely by utilising fleet management solutions, in 
this case openbalena. This abstracts specific hardware 
requirements for the edge devices, enabling one-click 
deployment and rapid provisioning. 

Remotely deployed, dedicated containerised micro 
services handle individual tasks. A low-code 
development environment hosts firmware that pulls 
necessary process data from the PCS. It can also host 
the standardised input GUI for recipe and product data 
that users can access with any browser if necessary. It 
is also possible to integrate Tilt Hydrometer 
administration and data polling via BLE-Beacon 
firmware. The services also include a robust and 
lightweight middleware to scrape high-frequency PLC 
process data via OPC UA and sensor data from Tilt 
Hydrometer via MQTT. It thereby also serves as the 
abstraction layer to route individual asset data into the 
unified data model. The service sends all data securely 
to the cloud-based NoSQL InfluxDB via WebSocket. A 
NoSQL-database utilisation at this point merits vastly 
improved performance and reduced data footprint for 
high frequency time series data. It is also possible to 
pre-process this data stream to optimise footprint even 
further with an additional dedicated service. A local 
backup database service handles individual asset data 
for redundancy. Deployment approaches on the edge 
and cloud are similar to reduce complexity and allow 
scaling (cf. Ahrend et al., 2019). In this case, together 
these services form the proven TICK stack (cf. Nasar & 
Abu Kausar, 2019). Overall, this approach allows rapid 
adaption and deployment for the different PEs. 

The cloud-hosted MariaDB holds static process and 
recipe data pulled from the HMI and provided by 
manual input (see Appendix A). Applications and 
services such as GUIs for dashboarding and business 
intelligence as well as the data science platform 
RapidMiner AI Hub for data-driven recipe optimisation 
(detailed in section 4.5) are able to access data directly. 
The cloud hosting approach allows high scalability and 
uncoupling of data acquisition and processing (cf. 
Ahrend et al., 2019). 

The focus of work so far is concentrated on the 
connection of the PE and DE to a DT model. For closing 
the loop back to the PE and DE, the application layer is 
detailed in section 4.5. The connection from services 
and applications is implemented as an assistant system 
for brewing experts in the form of a recipe simulator. It 
is directly accessible by the user and supports the 
optimisation of chosen ingredients before the next 
batch as well as parameter optimisation of process 
control via the HMI. 
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4.5. Application of the case study (recipe 
optimisation) 

For the task of optimising recipes, the use of ML is 
chosen. The application can have different scopes, 
addressing on the one hand improving the final product 
taste (e.g. for craft breweries and experimental 
batches) and on the other hand improving the 
utilisation of resources while getting a desired result 
(e.g. for a large brewery that wants to provide stable 
and consistent taste).  The application is characterised 
as a regression problem in which a large number of 
factors influence one or more target variables. The goal 
is to use a common data set for analysis, from which 
shared prediction models are trained. Within the case 
study, 12 batches of beer have been brewed on both 
sites, resulting in n = 208 tasting examples from 
sensory analysis. First, the number of >120 possible 
influencing factors was narrowed down to 58 recipe 
parameters, that can be influenced in advance, 
including amounts of ingredients, process 
temperatures and processing times. Second, different 
prediction models have been trained, including neural 
networks, generalised linear models  and decision 
trees. The choice of models was based on an analysis of 
the most commonly used approaches to regression 
problems, based on the level of scales of the final data 
set, addressing mostly ratio and nominal scales. For the 
evaluation of the model performance, different 
performance metrics can be chosen. In this case, the 
root mean squared error (RMSE) was chosen for the 
regression problem. Furthermore, the training and 
scoring times can be compared (see Table 1). The 
training and testing of the models is based on a 7-fold 
cross-validation, whose mean RMSE value was 
calculated. In this case, no clear best model is obvious. 
The small fluctuations may also be due to the fact that 
the target value of the mean assessment of the beer 
parameters compensates for variation. Other target 
variables, e.g. specifically the foam stability, but also 
the availability of new data sets, can lead to other 
models performing better over time. However, a GLM 
was chosen as a base for the application, shown in 
Figure 5. Based on the GLM regression algorithm of 
H2O 3.30.0.1, after 30 Iterations and a heuristic based 
lambda search on the training data it consists of 17 
active predictors. As a result of the study, the amount of 
"Hop 3" in the dry hopping phase (Ekuanot) has the 
largest influence on the beer rating, followed by the 
alpha acid content of "Hop 3" and the duration of the 
second rest time in mashing, followed by the quantity 
of the second hop (Mosaic). The model can be used by 
both sites to plan new improved recipes and is 
continuously enriched by new data sets from both 
breweries. 

Table 1. Comparison of different trained models within the case 

study 

Model RMSE Standard 
deviation 

Training 
time 
[ms] 

Scoring 
time 
[ms] 

Generalised Linear 0.58 ± 0.11 560 50 

Model 
Deep Learning 0.58 ± 0.09 1810 0,0 
Decision Tree 0.55 ± 0.06 210 150 
Random Forest 0.57 ± 0.21 230 100 
Gradient Boosted 
Trees 

0.56 ± 0.02 1920 75 

Support Vector 
Machine 

0.55 ± 0.19 130 225 

 

 
Figure 5. Recipe simulation within the model simulator 
environment of RapidMiner 

 
Figure 6. Data-driven generation of recipe optimisation 
recommendations 

The resulting models can be used for taste 
predictions, to detect characteristic values or to 
generate optimised recipe parameters. The effect of 
recipe changes on target variables can be simulated via 
sliders (Figure 5). However, single parameter 
variations should also be treated with caution, since 
multivariate influencing factors are the reason for 
applying ML. The model application therefore also 
contributes to the possibility of optimisation under 
definable limits of parameter variation. Figure 6 shows 
how a data-based recipe recommendation is generated 
that increases the average expected prediction from 
3.847 to 4.050 out of a maximum of 5.0. The changes 
are discussed by interdisciplinary teams, including 
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domain experts, and then transferred to a new recipe in 
PCS Zipmatic. In this way, a cross-site control loop for 
continuous recipe improvement is created on the basis 
of unified DTs. 

5. Conclusion and outlook 

This paper presents an approach to create shared 
prediction models based on unified DTs of products, 
processes and resources, and shows how to use them 
for data-based recipe optimisation in the food and 
beverage industry. A central generic data model was 
created, which is the basis for unified DTs and thus the 
integration of physical and digital entities, as well as 
the basis for cross-domain data analysis. Further 
research is needed, especially on the transferability of 
models and services in different application contexts 
and IT architectures, which supports economic and 
ecological applications of ML. In the ML context, the 
collection of larger amounts of data is necessary, e.g. by 
cross-company data use. Open research questions 
include the quantification of the benefits of such an 
approach for each individual partner, e.g. better 
forecasts and services. In addition, there is a need for a 
detailed examination of closed control loops, on the 
one hand of a technical nature (e.g., automated 
interventions of the application in physical and digital 
entities), but also the role of humans in the loop. 

Funding 

This research and development project is/was funded 
by the German Federal Ministry of Economic Affairs 
and Climate Action (BMWK) in the program "Smarte 
Datenwirtschaft" (funding code 01MT19004D) and 
supervised by the DLR Projektträger, the research 
project ML2KMU funded by it as well as the 
standardisation project EUPHORIC, funded by the 
BMWK (funding code 03TN0039A) and supervised by 
the Projektträger Jülich (PtJ).  

Appendix A. Digital twin data models 

Figure 7. Generical digital twin data model for data-driven recipe 
optimisation 

  

Figure 8. Digital twin data model within the case study as schema for the implemented databases 
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