

© 2022 The Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Proceedings of the 34th European Modeling & Simulation Symposium (EMSS), 003
19th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0029 © 2022 The Authors.
doi: 10.46354/i3m.2022.emss.003

Using HLPC for parallelization of autonomous tests of
WEB applications from its GUI

Mario Rossainz-López1 *, Jesús A. Islas-Fuentes, Ivo Pineda-Torres1, Manuel
Capel-Tuñón2

1 Faculty of Computer Science, Autonomous University of Puebla, Av. San Claudio and 14 Sur Street, San Manuel,
Puebla, México, C.P. 72570
2Software Engineering Department, College of Informatics and Telecommunications ETSIIT, University of
Granada, Daniel Saucedo Aranda s/n, Granada 18071, Spain

*Corresponding author. Email address: mrossainzl@gmail.com

Abstract
A proposal for parallelization of autonomous tests of Web applications from its graphical user interface (GUI) is presented to
reduce its execution time since these increases exponentially due to the number of combinations that are generated with the
different states of the fields, of the forms on the web application pages by creating a tree-like structure. It is proposed to use the
model of high-level parallel compositions or HLPC as a suitable model of semi-automatic parallelization that defines a Tree-
like structure as a communication pattern between processes. The proposed HLPC, which we call HLPC-Tree, uses
reinforcement learning that associates each node of the process tree as a slave object using the Q-Learning (QL) algorithm and
achieves autonomous recognition of the fields of the forms and valid-invalid options to identify failures and display them with
HTTP status codes. In addition, the Mechanize library is used to find the number of possible combinations through the states of
the fields of the forms and to know how many nodes are generated at each level of the process tree in the HLPC-Tree when it
grows in depth. Finally, the performance analysis of the proposed HLPC is shown with an analysis of the speedup and execution
times in an 8-core machine to demonstrate good scalability in its accelerations compared to Amdahl's Law.

Keywords: HLPC, reinforcement learning, Q-Learning, Web Application, GUI, Autonomous tests

1. Introduction

Web applications are an important part of our daily
lives. They range from entertainment websites to
complex and critical web applications such as banking
services and e-commerce. All of them demand a high
quality to guarantee efficiency, reliability, and security
in the use of data and information processing,
otherwise, failures will occur that could cause
economic losses both for the company that developed
the application and for the end-user. To guarantee the
correct functioning of a system and particularly of a
web application, software tests are carried out that

consist of applying methods of verifying expected
requirements and identifying and correcting bugs.
Software tests are carried out at different levels, with
different methodologies and manually or
automatically, however, they are limited due to the
complexity and time required to carry out a complete
verification, since its design and execution require
considerable time and it is at this point where the use
of parallelism can help speed up the testing process.
Web applications have particular characteristics, and
these affect the testing process. The proposal to
include parallelism in web application testing from its
GUI aims to reduce the testing time in a Web
application and contribute to the quality of the

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mrossainzl@gmail.com

 34th European Modeling & Simulation Symposium, EMSS 2022

development of these applications.

In this work we show a proposal for parallelization of
autonomous tests of standard Web Applications,
multi-page from its GUI, using Structured Parallel
Programming through High-Level Parallel
Compositions (HLPC), to reduce the execution time of
tests and achieve good performance to get the
application's native HTTP errors on machines with
multi-core processors.

This paper, therefore, proposes a model of Structured
Parallel Programming and Parallel Objects to
parallelize software testing methods, which allows
acceleration of test execution times, as well as a good
performance concerning their sequential execution
and helps developers to reduce work times in testing
web applications to find bugs and correct them.

2. Literature review

Humanoid is a tool proposed by (Li, Y., et al, 2019) that
is based on Deep Learning for automatic testing of
Android applications. The tool learns from human
interactions, that is, it can generate artificial human-
like interactions based on a graphical user interface to
test the application. In this proposal, a deep neural
network was implemented so that the tool could learn
how users interact with the application, and based on
this learning, a model was built that generates new
test cases. With this tool it is possible to carry out
automated tests for Android applications, with greater
coverage and speed than other generators of
traditional test cases, however, this work considers
limitations such as, for example, it presents a low
coverage of less than 10%concerningo other
proposals.

In (Harries, L., 2019) a framework called DRIFT is
proposed that performs automatic software tests
based on Q-Learning reinforcement learning through
Batch-RL whose algorithms operate under a symbolic
representation of the graphical interface and model
the state value function through a GNN (Graph Neural
Network). This framework can execute the desired
functions in an automated manner and performs
simple or combined tasks, proving to be efficient for
software testing with a wide range of objectives.

In (Nguyen, D.P., 2020) a framework is proposed that
allows the automation of functional tests without code
in a web application. To do this, it uses ML (Machine
Learning) and SVM (Support Vector Machines) to
detect and adapt to change and generate efficient test
cases. The framework uses Selenium, which is a suite
of testing tools for web applications (see Gross, P. and
Wang J.T., 2022), its results showed that the system is
efficient to carry out automatic tests on most standard
websites using generic test cases.

Finally, (Eskonen, J., 2019) deep reinforcement
learning is used to perform automatic software
exploration and testing, specifically in web

applications where functional tests are carried out and
communication errors with the backend are analyzed
through JavaScript. It was found that it is possible to
represent the states of the user interface as a vector or
image to operate the reinforcement learning
algorithms. Unlike other techniques based on
supervised learning, it does not have the problem of
requiring large volumes of data to achieve the training
of an efficient test model. In this approach, the testing
time for a real application can take whole days and it is
not known when to stop the training to reach optimal
efficiency.

As can be read, most of the proposals cited here,
although they are automated, require human
assistance on the one hand and, on the other hand, the
execution of the analysis of tests that they carry out on
web applications takes a lot of time. Our proposal to
parallelize the autonomous tests through HLPCs
proposes a novel alternative to reduce the execution
time of said test analysis and provide good
performance in computers with multicore processors.

3. Tests in WEB applications

Testing web applications consists of executing the
application in its different states using different
combinations of data inputs to verify its response to
each of these combinations and rule out defects in the
application. Depending on the type of fault found,
certain errors can be attributed to the runtime
environment where the application is running. The
tests of a web application can be divided into 2 large
groups, functional requirements tests, and non-
functional requirements tests. The first ones involve
the verification of the services and specific
functionality of the application (Lucca, F.A.D., 2006),
that is, the behavior directly related to the business
logic for which it was developed, while the second
ones involve tests that have nothing to do with the
services that the application provides but with the
level of quality with which the application responds in
different circumstances. The standard process for
testing software systems is to design the test, run it,
identify problems, errors, or bugs, and fix them.

3.1. Non-Functional Test (Lucca, F.A.D., 2006)

 Load tests: Evaluates if the performance of the
application is as expected under certain conditions
and a certain number of users.

 Performance test: Evaluates the performance of
the application using parameters such as response
time and service availability.

 Volume tests: Evaluates the performance and
behavior of the application with a large volume of
data.

 Stress tests: Evaluates the behavior of the
application under conditions of use that exceed

 Rossainz-López et al.

the specifications for which it was designed.

 Reliability test: Evaluates if the application is
reliable.

 Usability tests: Evaluate if the application is easy
to learn and use for end-users.

 Compatibility tests: Evaluates if the application
behaves correctly when running in different
hardware and software environments.

 Security tests: Evaluates the ability of the
application to defend against unauthorized access
attempts and the ability to maintain the integrity
of the application.

3.2. Functional Test (Lucca, F.A.D., 2006)

The functional tests verify that the services and
functionality provided by the application do not
present faults and behave according to the
requirements under which it was developed, for
example, user registration and authentication,
consultation, deletion and writing in the database,
operations with data, upload and download of files,
generation of dynamic views, etc.

3.3. Test Level (Umar, M.A., 2019)

 Unit Tests: Individual components that have
specific tasks within the application are tested on
both the server and client sides and validated that
they work as expected.

 Integration tests: The integration of the different
unit components of the application is tested to
validate their correct operation when they interact
with each other.

 System Tests: The application is tested when all its
unit components, both on the server and client-
side, are fully integrated.

 Acceptance tests: the tests are intended to
determine whether the system is accepted for
release and production based on the requirements
and quality level requested.

3.4. Strategies

 Black box testing: It does not require knowing how
the application to be tested is built, the system is
treated as a black box to which inputs are provided
and its outputs are analyzed to determine if it is
the expected one based on the software
requirements.

 White box tests: It is required to know the internal
structure of the application and have access to the
system code. Tests are performed for security
holes, broken data streams, cycle integrity, etc.

 Gray box testing: Combines black box and white

box testing to perform unit verification of the
application.

4. High Level Parallel Composition - HLPC

Using an OO-programming environment, the idea is
to implement any type of parallel communication
patterns between the processes of an application or
distributed/parallel algorithm. An HLPC comes from
the composition of a setoff three object types: an
object manager (Figure 1) that represents the HLPC
itself and makes an encapsulated abstraction out of it
that hides the internal structure (McCool, et al, 2012;
Rossainz, M. and Capel, M., 2017). The object manager
controls a set of objects references, which address the
object collector and several stage objects and
represent the HLPC components whose parallel
execution is coordinated by the object manager. The
objects stage are objects of a specific purpose, in
charge of encapsulating a client-server type interface
that settles down between the manager and the slave
objects. And a collector object, we can see an object in
charge of storing the results received from the stage
objects to which is connected, in parallel with other
objects of HLPC composition. During a service request,
the control flow within the stages of an HLPC depends
on the implemented communication pattern.
Manager, collector, and stages are included in the
definition of a PO (Corradi, A. and Leonardi, L., 1991;
Rossainz, M. and Capel, M., 2017). POs are active
objects, which have intrinsic execution capability.
Applications that deploy the PO pattern can exploit the
inter-object parallelism as much as the intra-object
parallelism. A PO-instance object has a similar
structure to that of an object in C++, and additionally
defines a scheduling policy that specifies which one or
more operations carried out by the instance
synchronize. The communication modes used are
Synchronous communication, asynchronous
communication, and the asynchronous future. The
Synchronization policies are expressed in terms of
restrictions; for instance, mutual exclusion in
reader/writer processes or the maximum parallelism
allowed for writer processes.

 34th European Modeling & Simulation Symposium, EMSS 2022

Figure 1. Abstract model of an HPLC

4.1. Representation of Tree as communication
pattern between processes as HLPC

The representation of the patron tree that defines the
technique of it Divide and Conquer as HLPC has their
model represented in Figure 2. This parallel solution
offers the prospect of traversing several parts of the
tree simultaneously in the HLPC Tree. Once a division
is made into two parts, both parts can be processed
simultaneously executing the sequential algorithm
contained in the slave object associated with the nodes
of the tree. Though a recursive parallel solution could
be formulated. One could simply assign one process o
thread to each node in the tree (Danelutto, M.,
Torquati, M. 2014)

This model can be easily extended using object-
oriented properties (such as inheritance,
polymorphism, and abstraction) to an HLPC that
represents N-arity trees as communication patterns
between processes.

Figure 2. HLPC-Binary Tree Abstract Model

5. Test parallelization process

The characteristics of the type of web application that
was worked on in this article are the following:

 Standard and traditional web application is
written in HTML with a structure based on URLs.

 Dynamic Web application under the client-server
model.

 Web Application MPA (Multi-Page Application)
and/or WEB Application SPA (Single Page
Application).

 Web application with client-side JavaScript code.

The tests considered in this work are restricted to
integration tests through the GUI of the web
application and comply with the following:

 The tests are carried out with the interaction of
the graphical User Interface of the Web
application.

 The web application directly contains the backend.

 The types of errors considered in the tests come
from the backend of the application through the
basic HTTP responses:

o HTTP 2xx status codes, for example, 203
– Non-Authoritative Information.

o HTTP 3xx status codes, for example, 307 –
Temporary Redirect.

 Rossainz-López et al.

o HTTP 4xx status codes, for example, 404
-Not Found.

o HTTP 5xx status codes, for example, 500
– Internal Server Error.

 The black box testing strategy is used. It does not
consider how the backend is built.

 It interacts with the GUI of the application.

We assume a web application with 3 pages, each one
with a form (to show the interaction with the GUI) and
each form with 3 input fields with different states, for
example:

1. Web page 1: Form with 3 fields, a menu with 3
states (options), a checkbox with 2 states, and a
text field with two states. Total possible
combinations: 3X2X2=12.

2. Web Page 2: Form with 3 fields, a menu with 4
states, 2 checkboxes, each with two states. Total
possible combinations: 4X2X2=16.

3. Web page 3: Form with 3 fields, two menus each
with 3 states, and a checkbox with two states.
Total combinations: 3X3X2=18.

The total number of combinations of the possible
states of the web application is 12X16X18= 3456.
Figure 3 shows the graphical representation of the
application context using a site map.

Figure 3. Contextual representation (site map) of a web application
with 3 pages, each with a form

In this example, 10 HTTP 500 errors and 35 HTTP 404
errors were intentionally incorporated into the web
page forms.

In Figure 3 the navigation of the web application
through its different forms creates a tree where the
root is the home page from which the tree grows in
depth through the navigation of the pages (see Figure
4).

Figure 4. Tree generated by the navigation in the Web application of
the example regarding the different states of the fields of the forms

The tests of the web application were carried out in an
automated way traversing the tree, using the
Mechanize opensource library for direct interaction
with the HTML code through the HTTP protocol for
filling out forms (see Kovid Goyal, 2017) and the use
of reinforcement learning using the Q-Learning (QL)
algorithm for the autonomous control of forms,
regardless of the total number of fields, their order
and the options available in each of them (Barto G.,
2014: Jang B., 2017).

Based on this analysis, the proposed parallelization
consists of taking the HLPC from section 4.1 as a base
and extending it using inheritance, abstraction, and
polymorphism to implement a new HLPC that
generates the tree in figure 4.

The Manager object receives the URL of the Web
application and creates a first Stage process as the root
of the tree (home page). The tree is created at runtime,
since we do not know the level of depth it will have,
nor the number of nodes that will be created by levels,
this depends on the combinations of the possible
states of the fields of each form on each web page.

Each tree node represents a Stage process that runs in
parallel with the others that are at the same tree level
and a slave object is associated with them that
contains the Q learning algorithm for the autonomous
execution of forms in deep learning.

The possible states of the form fields are obtained with
the Mechanize library and the possible combinations
that define the number of tree nodes at a given level
are generated.

When advancing through the tree with the divide and
conquer technique, the tests of the current web page of
the application are carried out and the errors found by
the Stage objects are identified (not necessarily in all
of them, only in those where a fault is found) and they
send to the collector of the HLPC. The Collector
process collects them and sends them to the Manager
process, which in turn sends them as final output. The
Manager process controls the parallel execution of
stages in deep learning. The graphic model of the
proposed HLPC is shown in Figure 5.

 34th European Modeling & Simulation Symposium, EMSS 2022

Figure 5. Model of the HLPC-Tree for autonomous tests of a multi-
page WEB application

6. Performance

A particular web application of seven pages was
created, each of them with a form with different fields
and states. Similarly, a series of HTTP errors were
intentionally created. The errors considered were
those represented by status codes 2xx to 5xx (see
Figure 6). The performance analysis of the HLPC-Tree
was carried out in its execution for the autonomous
tests of this web application.

Figure 6. Contextual representation (site map) of the web
application specifically for the performance analysis of the HLPC-
Tree

Figure 6 shows that each page shows a form, each with
4 fields: A "text field" with a single state (mandatory),
a "number field" with a single state (mandatory), a
"checkbox" with two states possible (true or false) and
the “select” field with different states on each page

(from five to eight possible options). Table 1 shows in
detail the possible states of each field in each form of
the 7 pages of the application and the total number of
combinations.

Table 1. Possible states of the forms of the 7 web pages of the
application

Form Possible States

Page_1:
TextField= 1
NumberField=1
Checkbox= 2
Select= 5

1*1*2*5 = 10

Subtotal= 10

Page_1_1:
TextField= 1
NumberField=1
Checkbox= 2
Select= 5

1*1*2*6 = 12

Subtotal= 10*12=120

Page_1_1_1:
TextField= 1
NumberField=1
Checkbox= 2
Select= 5

1*1*2*7 = 14

Subtotal= 120*14=1680

Page_1_1_1_1:
TextField= 1
NumberField=1
Checkbox= 2
Select= 5

1*1*2*8 = 16

Subtotal= 1680*16= 26880

Page_1_1_2:
TextField= 1
NumberField=1
Checkbox= 2
Select= 5

1*1*2*4 = 8

Subtotal= 10*12*8=960

Page_1_2:
TextField= 1
NumberField=1
Checkbox= 2
Select= 5

1*1*2*7 = 14

Subtotal= 10*14= 140

Page_1_2_1:
TextField= 1
NumberField=1
Checkbox= 2
Select= 5

1*1*2*5 = 10

Subtotal= 140*10=1400

In total, the web application has 26880+960+1400=
29240 possible states in its navigation that are
explored by the HLPC-Tree to detect HTTP errors. The
GUIs of the web application pages were created with
the Django framework (for details see Django, 2021),
HTML, CSS, and Javascript code, which allowed easy
handling of error mapping and testing of the web
application under different scenarios.

The execution of the HLPC-Tree (see Figure 5) was
carried out on an 8-core computer with 16 Gb of main
memory and memory shared by the stages or nodes of

 Rossainz-López et al.

the tree and other parallel objects (manager and
collector). Speedup and maximum acceleration
measurements were made using Amdahl’s Law and
these measurements were compared with its
sequential execution, the results of which are shown
in Table 2 and Figure 7.

Table 2. Results of the HLPC-Tree acceleration analysis in
autonomous tests of the Web application in Figure 6.

CPAN-Tree SEQ 2
CORES

4
CORES

6
CORES

8
CORES

Runtime Secs 1380 1020 780 720 540

Speedup 1 1.35 1.77 1.92 2.56

Amdahl 1 1.67 2.50 3.00 3.33

Fig. 7. Speedup scalability found for HLPC-Tree in autonomous tests
of WEB application of Figure 6.

Under these execution conditions, the workload in the
cores is considered sufficient to show a good
performance of the HLPC-Tree.

The execution was carried out in 2, 4, 6, and 8
exclusive cores whose times were measured in
seconds. In all of them, a much shorter time is
obtained than the sequential execution time, which is
almost 24 minutes, achieving a decrease of 17, 13, 12,
and 9 minutes, respectively (see Table 2). The speedup
values are shown in acceleration when increasing the
number of cores, and always below the maximum
acceleration level (Amdahl's Law), obtaining good
performance of the proposal.

The stages represent the leaves of the tree that is
proposed as the HLPC-Tree model. Each stage is a
thread of execution that is executed in parallel with
the rest of the stages that are created at the same level
of the tree and concurrently with respect to the
parallel computer architecture that is used. We are in
the presence of nested stages as the tree increase by

levels.

The tests carried out on the web page created
expressly for our work were done on a multi-core
computer with 8 cores. With this we have greater
control of the cores by managing them exclusively so
that they attend only to the execution of our proposal,
avoiding attention to other jobs as much as possible.
On a server we can hardly have that control. That is
one of the reasons for the speedup results obtained.

7. Conclusions

In this work, a structured parallel programming
proposal has been presented to improve the execution
times of the autonomous tests that are carried out in
web applications from their GUI. The proposal
consisted of using the model of high-level parallel
compositions or HLPC to adapt it to a particular model
that uses a tree appropriate to the problem posed as a
communication pattern between the processes. We
worked with a multi-page web application created for
this purpose. In total there were 7 pages, each with a
form and each form with 4 input fields: a text field, a
number field, a checkbox, and a multi-state select.
The number of possible navigation states in the
application was 29,240. Reinforcement learning was
used, associating the Q-Learning (QL) algorithm to
each node (stage) of the HLPC tree to achieve
autonomous recognition of the form fields and valid
and invalid options and identify failures and display
them with HTTP status codes 2xx to 5xx (for details
see Barto G., 2014: Jang B., 2017). To find the number
of possible combinations of the states of the form
fields and for the HLPC to know how many nodes to
generate at each level of the tree, the Mechanize
library was used. Finally, the performance analysis of
the HLPC-Tree is shown, which proved to be good. The
performance analysis shows the speedups found and
their execution times (CPU usage) which demonstrates
the good performance of the HLPC on an 8-core
machine and the good scalability of the speedups
compared to Amdahl's Law.

References

Barto G., (2014). Reinforcement Learning: An
Introduction. Stanford University.

Corradi A. and Leonardi L. (1991). PO Constraints as
tools to synchronize active objects. Journal Object
Oriented Programming 10:42-53.

Danelutto, M., Torquati, M. (2014). Loop parallelism: a
new skeleton perspective on data parallel patterns.
Proc. of Intl. Euromicro PDP, Parallel Distributed
and Network-based Processing, Torino, Italy.

Django, (2021). The web framework for perfectionists
with deadlines. https://www.djangoproject.com

Eskonen, J., (2019). Deep Reinforcement Learning in
Automated User Interface Testing. Alto University,

https://www.djangoproject.com/

 34th European Modeling & Simulation Symposium, EMSS 2022

9-30.

Gross, P., Wang J.T. (2022). Selenium automates
browsers. https://www.selenium.dev/

Harries, L., (2019). DRIFT: Deep Reinforcement
Learning for Functional Software Testing. 33rd
Deep Reinforcement Learning Workshop (NeurIPS
2019), 1-8.

Jang B., (2017). Q-learning Algorithms: A
Comprehensive Classification and Applications.
Department of Computer Science, Sangmyung
University.

Kovid Goyal (2017). Mechanize.
https://mechanize.readthedocs.io/en/latest/

Li, Y., Yang, Z., Guo Y. and Chen X. (2019). Humanoid:
A Deep Learning-Based Approach to Automated
Black-box Android App Testing. 34th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), 1070-1073.

Lucca, F.A.D., (2006). Web Application Testing. Web
Engineering. 219-260.

McCool M., Robison A.D. and Reinders J. (2012).
Structured Parallel Programming. Patterns for
Efficient Computation. Morgan Kaufmann
Publishers Elsevier. USA.

Nguyen, D.P., (2020). Codeless web testing using
Selenium and machine learning. 15th International
Conference on Software Technologies, 2-7.

Rossainz M. and Capel M. (2017). Design and
implementation of communication patterns using
parallel objects. Especial edition, Int. J. Simulation
and Process Modelling, 12:1.

Umar, M.A., (2019). A comprehensive study of
software testing: Categories, levels, techniques,
and types. International Journal of Advanced
Research, Ideas, and Innovations in Technology.

https://www.selenium.dev/
https://mechanize.readthedocs.io/en/latest/

