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Abstract 
The Value of Perfect Information (EVPI) and also Sample Information (EVSI) are necessary for calculating the expected economic 
benefit of a research based on evidence about the cost and efficacy of novel therapies. The EVPI determines the maximum value 
resulting from soliciting data to decrease the uncertainties and the expected loss in case of providing ineffective treatment. In 
general, an inefficient decision will waste health resources that may be better spent elsewhere, thereby deteriorating health 
outcomes. In this article, the value of information resulting from reducing uncertainty will be applied in assessing two COVID-19 
treatments, namely, the standard care and vaccines. A discrete event simulation model is introduced to expand the usage of EVPI 
calculations to medical applications with various sources of uncertainty as the case of COVID-19. Our simulation results show 
that further testing and vaccine validation will be of insignificant value if the response rate on vaccine is higher than 85%. The 
purpose of this study is to provide a step-by-step guide to the computation of the value pre-testing in the context of healthcare 
decision-making. Worked scenarios were presented for COVID-19 in UAE. The study can serve as a useful template for various 
decision-making problems in medical settings. 
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1. Introduction 
The coronavirus epidemic (COVID-19) has wreaked 
havoc on society and economy all over the world 
(Sizhong S. 2022; Timelli L. et al., 2021). As of January 
2022, almost 300 million illnesses and five million 
fatalities had been documented worldwide (WHO, 
2022). Despite public health authorities enforcing 
preventative measures like mask use, illnesses and 
casualties continue to accumulate (Sylvia H. et al., 2021; 
Hisrael P. et al., 2022). Fig. 1 shows the number of cases 
and deaths due to COVID-19 as of 16 January 2022. 
 
To confront the pandemic, universal immunization 
against COVID-19 is required in the light of the terrible 
situation and the proliferation of new variants of the 
virus. Although different vaccines have been produced, 
unfortunately, vaccination reluctance has put several 
immunization initiatives at risk (Winter T. et al., 2022; 
Marta C. et al., 2022; Merkley E. et al., 2022). 

 
The direct medical expenditures incurred, simply 
during the illness, might be as high as $163.4 billion in 
the United States of America (Michele et al., (2021). 
This estimate excludes medical costs associated with 
post-infection care or the worsening of unrelated 
diseases as a result of postponement of preventive care 
and diagnosis (Michele K. et al., 2021). 
 

 
Fig. 1: Covid-19 cases and deaths as of 16 January 2022, 
from WHO, 2022. 

https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
There are now some newly suggested COVID-19 
vaccinations. In new vaccines, there are numerous 
factors to consider, including the feasibility of use in 
clinical settings, cost and effectiveness (Sookaromdee 
P., and Wiwanitkit V. 2021). The cost and efficacy of 
various vaccinations may be major factors in the choice 
to deploy a new immunization (Hotez P. and Bottazzi 
M. 2020). Furthermore, a vaccination that is suitable 
for clinical use which is easy to store and administer, 
should be chosen. Due to unknown outcomes, adverse 
reactions, and responses, people may not be entirely 
immune even after receiving vaccinations. Therefore, it 
is important to establish methods to evaluate 
information and tests that can reduce such 
uncertainties. The valuation of information on 
uncertainties in COVID-19 treatments will be the main 
focus of this paper. 
 
The paper is organized as follows: Section 2 explains 
the EVPI followed by a brief about finding the EVPI via 
simulation in Section 3. Section 4 explains the proposed 
model and in section 5, the decision problem is laid out. 
Section 6 demonstrates the discrete event model 
followed by the results and conclusions in sections 7 
and 8, 

2. Expected Value of Perfect Information 
Value of Information (VOI) is a decision-making 
approach that classifies and positions the areas of a 
decision model where more information is anticipated 
to be valuable. VOI, in particular, identifies the possible 
advantage that might be realized if the condition of a 
previously unknown variable is known before the 
choice is taken (Constantinou B. 2018). 
 
The Expected Value of Perfect Information (EVPI) 
offers a collective estimate representing the expected 
benefit when we have perfect knowledge about the 
states of all the variables in the decision problem. 
However, when uncertainties pile up on top of each 
other, finding the EVPI can be difficult such as the case 
of COVID-19. Here, only sampling and simulation can 
be helpful to address such a problem. While a decision 
analyst is usually more concerned with the value of 
obtaining extra information on particular individual 
factor than with the total worth of all variables, the 
EVPI provides the maximum possible value one can 
gain from any kind of information. 
 
Unlike the EVPI, calculating the expected value of 
sample information of continuous variables is more 
challenging which will be addressed in future work, 
however, in this paper, a discrete event simulation 
model is proposed to estimated the EVPI. Due to 
uncertainties in the results of standard care and 
vaccination in dealing with COVID-19, the value of 
information becomes crucial in the decision of whether 
to implement vaccines and or consider only standard 

care. The purpose of this paper is to address the 
possible uncertainties of such health care problem in 
order to value the different treatment options if 
uncertainties are eliminated. 

2.1. Decision Trees 
A decision tree depicts all potential arrangements of 
decision junctions, potential events and observations 
in a given sequence on a tree assembly to describe a 
decision problem. The decision and chance nodes of a 
decision tree are represented by rectangles and circle, 
respectively. Each decision node outgoing arc 
symbolizes a decision alternative, and each chance 
node outward arc represents a result labeled by name 
and the associated probability. 
 
The benefit nodes are positioned at the leaves of the 
tree which do not have outward arcs. Accordingly, each 
route from the root to the leaf reflects a decision 
situation with a series of decisions and possible events. 
Due to their ease of use and simple calculation, decision 
trees have become popular modeling tools. The size of 
a decision tree, on the other hand, can expand 
exponentially as the number of variables or states 
grow. In this article, we will use decision trees to value 
two types of COVID-19 treatment, namely, standard 
care and vaccination. 
 

2.2. Expected Value of Perfect Information of 
continuous variables 

In the field of health economics, Bayesian decision 
models are becoming progressively prominent. Many 
EVPI and EVSI algorithms have been established 
particularly for Bayesian models using Monte Carlo 
simulation and sampling methods. The conditional 
probability distributions and functions of each 
parameter are generally represented by a series of 
mathematical equations in these models. 
 
Estimating the EVPI is the first step in value of 
information analysis. It’s the projected benefit per 
patient of a trial with an infinite sample size, yielding 
complete knowledge of all (total) unknown 
parameters, effects and characteristics. Such a 
research, albeit hypothetical, would eliminate 
confusion regarding the net benefit of each 
intervention. The EVPI finds the ceiling of the expected 
cost of a future study. Studies with a finite sample size 
or studies that evaluate only a subset of factors all have 
a lower expected benefit than the EVPI. 
 
As a result, extra research is not justified if the EVPI 
does not surpass the fixed cost of research. On contrast, 
if the overall EVPI exceeds the fixed cost of research, 
additional research may be justified. However, the EVPI 
depends on uncertainty, in simple terms, the 
anticipated loss associated with uncertainty is the 
probability of being “incorrect” multiplied by the 
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average result of being incorrect (the opportunity loss), 
which is equivalent to the EVPI. For instance, the 
expected incremental net benefit (INB) of the following 
payoffs of two course of actions and four states of 
nature is 225 as shown in Table 1. The expected loss is 
0.05 × (−750) + 0.25 × (−250) = −1000, which is in 
essence the EVPI. 
 
Table 1: An example of incremental net benefit. 
  State 1 State 2 State 3 State 4  

Probabilities  0.05 0.25 0.4 0.3 Expected 
benefit 

Decision  𝑑 ∈
𝑫 

 Probability of state 𝜃 ∈ 𝜽 𝐸𝜃{𝐵(𝑑, 𝜽)} 

New 
treatment 

 250 750 1250 1750 1225 

Standard 
treatment  1000 1000 1000 1000 1000 

INB  -750 -250 250 750 225 

 
Fig. 2 shows the incremental net benefit of Table 1. If 
the mean of the INB distribution is positive, the 
expected loss is − ∑ 𝑝𝑖 × 𝐼𝑁𝐵𝑖|𝐼𝑁𝐵𝑖 ≤ 0𝑖 . On contrast, if 
the mean of INB distribution is negative the expected 
loss is ∑ 𝑝𝑖 × 𝐼𝑁𝐵𝑖|𝐼𝑁𝐵𝑖 ≥ 0𝑖 . Alternatively, this can be put 
in a continuous form as follows: 
 

𝐸𝑉𝑃𝐼 = −Γ(�̅�) ∫ 𝑥𝑓(𝑥)𝑑𝑥 + (1 − Γ(�̅�)) ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

0

0

−∞
        (1) 

 
Where, 𝑓(𝑥) is the prior density function of the 
incremental net benefit, �̅� is the mean of the 
incremental net benefit density function and Γ(�̅�) is a 
binary function, where Γ(�̅�) = 1 if �̅� ≥ 0 and Γ(�̅�) = 0 if 
�̅� < 0. For example if the benefit of the standard 
treatment is 1500AED instead of 1000, the mean INB 
will be −275, and hence, the first part of equation (1) 
will be valid and the EVPI will equal to 75. 
 
The main challenge in using (1) is the unavailability of 
the function 𝑓(𝑥), particularly when many uncertain 
parameters are involved like the case of COVID 
vaccination. Therefore, other but approximate 
methods can be found to estimate the EVPI as 
illustrated shortly. 
 

 
Fig. 2: An example of incremental benefit of Table 1. 

 

3. EVPI via Simulation 
Suppose in a typical decision-making model that the 
decision alternatives are denoted by D and the unknown 
parameters by  with the joint pdf of 𝑃(𝜽). In such a 
model, we seek to find the benefit 𝐵(𝑑, 𝜽) of the decision 
𝑑 in D. With this, each alternative predicted benefit is: 
 

𝐸𝜃{𝐵(𝑑, 𝜽)} = ∑ 𝐵(𝑑, 𝜽)𝑃(𝜽)𝜃                           (2) 
 
If we don’t know the value of any model parameter, we 
compute the anticipated benefit of each alternative and 
choose the alternative with the highest expected value, 
i.e., 
 

max
𝑑

[𝐸𝜃{𝐵(𝑑, 𝜽)}]                                      (3) 

 
which is represented in the last column of Table 1. If we 
could have perfect knowledge on all uncertain 
parameters in the decision problem, we would be able 
to adjust our actions to optimize the result and 
minimize the losses incurred by the uncertainty in the 
model. The anticipated benefit with perfect 
information is determined as follows: 
 

𝐸𝜃 (max
𝑑

[𝐵(𝑑, 𝜽)])=∑ 𝑃(𝜽) max
𝑑

[𝐵(𝑑, 𝜽)]𝜃                  (4) 

 
The difference between the maximum expected value 
with perfect information and the highest expected 
value without perfect information is the expected value 
of perfect information (EVPI). 
 

𝐸𝑉𝑃𝐼(𝜽) = 𝐸𝜃 (max
𝑑

[𝐵(𝑑, 𝜃)]) − max
𝑑

[𝐸𝜃{𝐵(𝑑, 𝜃)}]         (5) 

 
The above formula can be easily implement in a 
simulation model as compared to (1).  

4. The Decision Making Model 
Assume a novel treatment for a health condition is 
offered to substitute a current treatment. The decision 
is whether to use the new treatment instead of the old. 
According to economic theories, this decision should be 
made based on whether it will achieve a net gain, taking 
into consideration the opportunity cost of the new 
treatment (i.e., the worth of health sacrificed 
somewhere else in the system to make space for the 
newly proposed treatment). The incremental net 
benefit of the proposed treatment is used to calculate 
this, which is basically a rearranged version of the 
incremental cost-effectiveness ratio decision rule. 
 
The value of information statistics can be calculated in 
two ways: analytically, which usually requires 
normality assumptions among parameters, and 
numerically (through simulation), which relaxes some 
of the assumptions like the normal distribution of 
observations; however, it can be time consuming, 
requiring many hours of computational time. The 
analytical solutions tend to assume that the mean INB 



 

 

is a simple linear composition of incremental mean 
cost and outcomes, that is: 𝑏 = 𝛹𝑄 − 𝑐, where 𝑏 is the 
benefit, 𝑄 is the gain, 𝛹 is the willingness to pay and 𝑐 
is the cost. Throughout this research, outcomes are 
measured in Quality-Adjusted Life-Years (QALYs).  
 
QALY value is a quantification of the health condition 
over a period of time. The score is used to quantify the 
value of medical treatments in economic assessment. 
For instance, an individual with an average health 
condition over one year can be assigned a value of one 
QALY, which is equivalent to excellent health condition 
over half a year. Alternatively, this is equivalent to 
living 2 years with a poor health condition. QALYs can 
be used to guide health insurance coverage decisions, 
program evaluations, treatment decisions, and future 
program priorities. Fig.  3 shows an instance of the 
increase in QALY profile upon intervention. 

 
Fig. 3: The concept of QALYs. 

5. The Decision Problem 
The fundamental decision problem in the treatment of 
COVID-19 is whether to go for standard care or 
vaccination option. In our decision model, we found 
that a response on the standard treatment happens 
with a probability of Beta (70, 30) as shown in Fig. 4. 
The standard care of COVID-19 may include 
Hydroxychloroquine, 400mg BID×2 doses, then 200mg 

PO BID for 5 days OR Chloroquine Phosphate 500 mg PO 
BID for 5 days, other treatments include Pfizer’s 
Paxlovid, Favipiravir, Remdesivir, etc. The gain in 
QALYs in case of response, regardless on standard 
treatment or vaccines is norm(6, 0.5) and the cost of 
standard care is estimated by 500AED (1AED is 
equivalent to $0.273 dollars at the time of study). 
 
On the other hand, for vaccination, the vaccine is 
anticipated to significantly minimize the chance of 
catastrophic episodes. Those vaccinations are quite 
efficient, but they are also “reactogenic,” meaning that 
they are likely to trigger an immunological response. In 
this research, vaccinations may come with side effects 
with a probability of Beta(40, 60). 
 
According to the type of COVID-19 vaccination, 
different side effects may be noticed. Pfizer and 
Moderna vaccinations have the highest negative 
effects, (Meredith G. et al., 2022). The side effects of 
standard vaccines such as Pfizer and Senopharm 
include soreness at the injection site which seems to be 
the most typical and prevalent adverse effect. Fatigue, 
headache, muscular pains, chills, weariness, lethargy, 
tenderness, joint discomfort, and potentially a fever, 
are also some of the other adverse effects. 
 
If a patient chooses the vaccination, she/he may 
experience side effects as illustrated above. With side 
effects, a loss in QALYs is estimated by norm(1, 0.2). 
The gain in QALYs for the vaccination arm is estimated 
by norm(6, 0.5) if no side effects are observed. On 
contrast, if side effects are experienced, the gain in 
QALYs will decrease by an amount of norm(1, 0.2). The 
cost of vaccine is estimated by 2500AED in UAE. An 
additional cost of Gamma(2.5,400)AED is needed to 
treat the vaccine side effects should they occur.  
 

 

 
 

Fig. 4: The decision problem costs and QALYs for every arm in treating COVID-19. 
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Prior data on the efficacy of the new vaccines in the 
form of the log odds ratio (LOR) is available, but 
limited. Therefore, we use the following contingency 
table which was found on real cases in UAE-University 
of Sharjah Hospital as follows: 
 
Table 2: Contingency table of the response on the two 
treatments. 

 Response No response 

Vaccination A = 70 B = 30 

Standard treatment C = 60 D = 40 

 
The estimated Odds ratio of the contingency table is 𝑂 =
𝐴×𝐷

𝐶×𝐵
. Note that, ln(Odds ratio) roughly follows a normal 

distribution  with a mean of “ln(𝑂)” and a standard 

deviation  of 𝜎 = √
1

𝐴+0.5
+

1

𝐵+0.5
+

1

𝐶+0.5
+

1

𝐷+0.5
. In terms of 

exact probabilities, the odds ratio is given by: 
 

𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 =
𝑂𝑑𝑑𝑠 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑛 𝑣𝑎𝑐𝑐𝑖𝑛𝑒

𝑂𝑑𝑑𝑠 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑛 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑎𝑟𝑒
,             (6) 

 
Where the odds of response on vaccine = probability of 
response on vaccine/(1- probability of response on 
vaccine) and the odds of response on standard care = 
probability of response on standard care/(1- 
probability of response on standard care). By plugging 
these two expressions in (6), we get: 
 
𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 =

Prob.  resp.  on vaccine×(1−Prob.resp.on strd treatment)

(1−Probability resp.on vaccine)×Prob.  resp.  on strd treatment
              (7) 

 

To mimic the contingency table, the odds ratio will be 

sampled from 𝑛𝑜𝑟𝑚(ln (𝑒), 𝜎). Denote the sampled ratio 

by 𝒩(ln (𝑒), 𝜎), hence, the probability of response on 

vaccine is given by: 

 

𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑛 𝑣𝑎𝑐𝑐𝑖𝑛𝑒 =

𝒩(ln (𝑒),𝜎)×𝑃𝑟𝑜𝑏.  𝑟𝑒𝑠𝑝.  𝑜𝑛 𝑠𝑡𝑟𝑑 𝑐𝑎𝑟𝑒

𝑃𝑟𝑜𝑏.𝑟𝑒𝑠𝑝.  𝑜𝑛 𝑠𝑡𝑟𝑑 𝑐𝑎𝑟𝑒×[𝒩(ln(𝑒),𝜎)−1]+1
                                         (8) 

 
The side effects have a negative impact on one’s quality 
of life, therefore, side effects will reduce the gained 
QALYs should they occur. The total cost end of each arm 
𝑖 is given by 𝑐𝑖,𝑗, when patient 𝑖 is treated through arm 𝑗, 
where 𝑗 is either the standard treatment or vaccination. 
Let the QALYs of patient 𝑖 in arm 𝑗 be denoted by 𝑄𝑖,𝑗, 
with this, the net benefit of each patient in arm j will be: 
 

𝑏𝑖,𝑗 = 𝛹𝑄𝑖,𝑗 − 𝑐𝑖,𝑗,                                 (9) 
 
where 𝛹 is the wiliness to pay per QALY. Therefore the 
average benefit of arm 𝑗 is: 

𝐵𝑗 =
∑ 𝑏𝑖,𝑗

𝑛𝑗
𝑖=1

𝑛𝑗
,                                   (10) 

 
where 𝑛𝑗  is the sample size in arm 𝑗. 

6. Discrete Event Simulation Model 
The expected value of perfect information which 
demonstrates the cap on how much gain one could 
achieve from eliminating the uncertainty in the 
problem. This makes the analytical and closed form 
solutions of EVPI particularly in the medical settings a 
challenging task. Thanks to simulation techniques that 
can help in finding such a quantity. In this work, we 
estimate the expected value of perfect information 
using discrete even simulation, particularly, using 
Arena 14.5. Here, we simulate the arrival of 1 million 
patients who have to decide between standard 
treatment of COVID-19 or vaccination. The model is 
depicted in Fig. 5 where each arrival, upon creation, is 
assigned different attributes and variables across its 
arm till the disposal block. To be able to compare the 
standard treatment vs. the vaccination, the entities are 
cloned for the two arms. For the standard treatment 
arm, the response probability of the treatment is given 
by a simulated data from the second row of the 
contingency table, that is Beta (60, 40). 

 

 
Fig. 5: Arena Simulation Model. 



 

 

7. Results 
By running the simulation model for 1million patients, 
the tally of the calculated variables is shown in Table 3. 
Following the equation of (5) to find the EVPI, it was 
found that, by eliminating all the uncertainty in the 
outcomes, the Expected Value with Perfect Information 
EVwPI= 96103.96AED, and that with no information, 
under uncertainty max

𝑑
[𝐸𝜃{𝐵(𝑑, 𝜽)}] =95500.58AED, 

therefore, the EVPI= 5287.24AED. With 1million 
patients, the half width becomes extremely small 
leading to high confidence in the results as shown in 
Table 3. As a remark, the value of willingness to pay (𝛹) 
is 20,000AED. 
 
Table 3: Results of a simulation run of 1Million patients 
using the contingency Table (2). 

Expression Average 
Half 

Width 
Minimum Maximum 

Average Benefit on Old 95,500.58 16,121.64 60,034.24 140,308.19 
Average Benefit on 
vacc 

90,816.72 21,089.84 46,335.62 133,741.35 

EVwPI 96,103.96 16,162.80 60,650.86 140,308.19 

 
To demonstrate the warm-up period of the model, Fig. 
6 shows the statistics of the first 100 patients. Clearly 
the model average values stabilize after a small number 
of arrivals. 
 

 
Fig. 6: Case by case and average benefit of the two 

treatments for 100 patients. 
 

The sampled probability of the response on vaccine is 
shown in Fig. 7 over the 100 cases. The data points show 
an average around 0.7 as given by the contingency 
table. The probability of response on vaccine has been 
sampled from the contingency Table 2.  
 

 
Fig. 7: Simulated probability of response on vaccine 

using the odds ratio in Table 2. 
 
 
Due to high uncertainty in response, the model shows 
that higher benefits in the standard care are expected, 
i.e.,  95500.58AED>90816.72AED. For this reason, we 
have run the model again by considering higher 
response rate on vaccines as in Table 4. The results of 
this scenario are shown in Table 5. Clearly, with higher 
response rate on vaccines, the expected gains of the 
vaccine arm will be higher than that in the standard 
care, i.e., 95500.58 vs. 102563.16AED. Better response 
rates on the vaccine will ultimately reduce the value of 
perfect information, which in turn reduces the value of 
sample information. That is, additional testing and 
sampling will be of less value when vaccinated patients 
demonstrate higher response rates. In fact the EVPI for 
this instance has dropped to 256.86AED. 
 
Table 4:  Modified contingency table  

 Response No response 

Vaccination A = 90 B = 10 

Standard treatment C = 60 D = 40 

 
Table 5: Results of a simulation run of 1Million patients 
using the contingency Table 4. 
 
Expression Average Half 

Width 
Minimum Maximum 

Average Benefit on 
Old 

95,500.58 16,121.64 60,034.24 140,308.19 

Average Benefit on 
vacc 

102,563.19 23,013.35 59,994.13 147,515.52 

EVwPI 102,820.06 22,128.98 61,643.48 147,515.52 

 
Although QALYs are roughly assessed in this article, 
more precise estimation will improve the estimate of 
the EVPI. The main advantage of this preliminary 
research is to build a discrete simulation system to 
model a decision tree of standard vs. vaccination 
options of COVID-19. This research will be extended to 
include the estimation of expected value of sample 
information. 
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8. Conclusions 
This paper intended to give a “hands-on” approach to 
utilizing VoI as well as providing workable template to 
help scholars conduct their own research in valuing 
different treatments. The study implements two 
methodological approaches, namely the analytical and 
the numerical solutions. Each approach has its own set 
of pros and cons. The main benefit of the analytical 
technique is its short computational time and sound 
estimations that are free of noise. Simulation, on the 
other hand, suffers from the random noise that is 
inherent from random numbers generation. 
 
The advantage of the numeric technique, on the other 
hand, is its flexibility in terms of the distributional 
forms of both input and output parameters; 
nevertheless, running enough simulation runs to 
minimize Monte Carlo errors is evidently effective. 
Comparisons of the outcomes of the analytical and 
numerical methods would be an interesting 
contribution to the literature. In the discrete event 
simulation model, we could extend the use of EVPI 
calculations to medical decision-making applications 
with a variety of sources of uncertainty for the case of 
COVID-19 vaccines. It was found that, further market 
testing and vaccine validation will be of insignificant 
value if the vaccination response rate is above 85%, 
according to our simulation results. 
 
Finally, VoI is an approach for calculating the expected 
return on investment in research. It was shown that 
when the response rate on vaccine is not high, further 
tests will be of a value, however, when the response rate 
on vaccines is high, the investment on testing the 
vaccine hardly can be justified. This document, along 
with the Arena model is meant to serve as a useful 
template that may be easily modified to various 
decision scenarios. 
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