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Abstract
Although widely used, standard game-theoretic approaches to security games face severe shortcomings, being the common knowledgeassumption a critical one. Adversarial Risk Analysis (ARA) is an alternative modeling framework that mitigates such limitations.However, from a computational perspective, ARA is much more involved than its game theoretical counterparts. We propose anapproach for finding ARA solutions to security games represented as bi-agent influence diagrams that is based on augmentedprobability simulation. We motivate this approach using two simple cases: sequential and simultaneous defend-attack models. We nextprovide the general framework and illustrate it in handling risks in a cybersecurity setting.
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1. Introduction

Security games provide a flexible and strong modelingframework for strategic and operational defense andhomeland security problems, as argued in Brown et al.(2006), Zhuang and Bier (2007), Brown et al. (2008) orHausken (2011). These authors illustrate the analysis ofsecurity games from a standard game theoretic perspec-tive based on approximating Nash equilibria and relatedrefinements.
The common knowledge assumptions underlying suchgame theoretic approaches, critically reviewed in e.g.Raiffa et al. (2002) or Hargreaves-Heap and Varoufakis(2004), constitute a shortcoming in the security domain.In most games, it is assumed that agents know not onlytheir own payoffs, preferences, beliefs and possible ac-tions, but also those of their opponents. In games of incom-plete information (Harsanyi, 1967), it is typically assumedthat each agent has a joint probability distribution overtheir opponents’ types which is known by all the players.Such assumptions allow for a symmetric joint normative

analysis in which players maximise their expected util-ities, and expect other players to do the same. However,in defense and homeland security, agents will not gener-ally have so much knowledge about their opponents asplayers try to hide information. Adversarial Risk Analysis(ARA), Rios Insua et al. (2009), is an alternative model-ing framework which mitigates these common knowledgeassumptions. Rather than addressing the problem simul-taneously for all agents, ARA provides prescriptive supportto one of the decision makers, which we shall refer to as thedefender (she), seeking for actions that maximize her ex-pected utility: Nash equilibria notions are abandoned andthe defender’s problem is viewed as a decision analytic oneinstead. However, procedures which employ the game the-oretic structure are used to estimate the probabilities of theopponent’s (referred to as the attacker, he) actions. ARAthus make operational the Bayesian approach to games,as sketched in Kadane and Larkey (1982) or Raiffa (1982).
A main motivation for ARA comes from security andcounter-terrorism analysis. Since its introduction, it hasbeen used to model a variety of problems such as network
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routing for insurgency (Wang and Banks, 2011), interna-tional piracy (Sevillano et al., 2012), urban security re-source allocation (Gil et al., 2016), adversarial classifica-tion (Naveiro et al., 2019), counter-terrorist online surveil-lance (Gil and Parra-Arnau, 2019), cyber-security (Rios In-sua et al., 2019), insider threat modelling (Joshi et al., 2020)and combat modeling enhancement (Roponen and Salo,2015), to name but a few.However, a major problem with the implementation ofARA refers to its computational issues since it essentiallyentails a two-stage approach in which we first simulatethe attacker’s problem to compute a probabilistic forecastof the adversary’s actions and then use that forecast to op-timize the defender’s problem. In Ekin et al. (2022), aug-mented probability simulation (APS, Bielza et al. (1999))was explored as a solution method for simple sequentialdefend-attack games from an ARA perspective. In partic-ular, it was shown that APS could be more efficient thanstandard Monte Carlo based techniques in situations inwhich the cardinality of the decision sets of the agentsintervening in the security game is very big.We present here how APS may be used to solve gen-eral security games described through bi-agent influencediagrams (BAIDs) (Banks et al., 2015) from an ARA per-spective. For this, we first provide a brief introduction toAPS (Section 2), and explain how this solution approachcan be utilized for solving sequential defend-attack (Sec-tion 3) and simultaneous defend-attack (Section 4) games.Section 5 sketches the analysis for general BAIDs. We endup with an experiment illustrating the proposed approach(Section 6) and a brief discussion (Section 7).Our aim is thus to support the defender in her deci-sion making. For this, we need to forecast the attacker’sintentions. Many different attacker rationalities may beconsidered in the ARA framework, see Rios Insua et al.(2016). However, we circumscribe here the defender tobe a level-2 thinker, in the Stahl and Wilson (1995) sense:she will ponder how the attacker’s strategy would adaptto her own strategy but presume that he will not conductlikewise. Thus, we assume that the attacker is an expectedutility maximiser. We could predict his actions by findinghis maximum expected utility policy; however, the uncer-tainty in our assessments about the attacker’s probabili-ties and utilities propagates to his optimal decision thatbecomes random, providing us with the required proba-bilistic forecast over the attacks.
2. Augmented Probability Simulation

In decision analysis settings, the goal is usually to findan action or set of actions that maximize the expectedutility of the decision maker. In general, expected utilitycannot be computed analytically and needs to be approx-imated. Most solution methods proceed by first estimat-ing the expected utility for every possible action (usuallythrough Monte Carlo integration) and then optimizingsuch estimate. Instead, APS solves for expected utility

maximization by converting the tasks of estimation andoptimization into simulation from an augmented distri-bution over the joint space of decisions and outcomes.Suppose that we aim to maximize the expected utility
ψpdq “

ş

upd, θq ¨ ppθ|dq dθ, where θ is a random out-come whose distribution is ppθ|dq and upd, θq is the util-ity perceived when choosing d and obtaining outcome θ.APS stems from the observation that if the utility is non-negative and integrable, we can define the augmented dis-tribution πpd, θq9upd, θq ¨ ppθ|dq on the augmented spaceof decisions and outcomes. Then, under mild conditions,the mode of the marginal augmented distribution in dcoincides with the maximum expected utility solution.This suggests a strategy to compute the optimal decisionbased on simulating from the augmented probability dis-tribution (for which Markov chain Monte Carlo simulationmethods French and Insua (2000) are instrumental) and,then, assessing the marginal mode using mode estimationmethods Chacon (2020).
3. Sequential Defend-Attack games

3.1. Basic template

Drawing on Ekin et al. (2022), this section sketches howAPS-based methods can be utilized for finding optimaldefenses in sequential defend-attack games under incom-plete information. For illustration purposes, we brieflysketch also the complete information case.Assume a Defender (D, she) who chooses her defense
d P D, where D is her set of feasible alternatives. Afterhaving observed it, an Attacker (A, he) chooses his attack
a P A, with A being his set of available alternatives. Theconsequences of the interaction for both agents dependon a random outcome θ P Θ, withΘ the space of outcomes.Figure 1 displays a template for the corresponding BAID(Banks et al., 2015). Arc D-A reflects that the Attacker ob-serves the Defender’s decision. As a motivating example,suppose that a defending organisation decides its protec-tion level against, say, a cyber-attack. An attacking or-ganisation observes such protection level and decides itsattack intensity. The attack may be successful or not de-pending on its intensity and the protection level chosen bythe defender. Increasing protection level (attack intensity)entail higher costs for the defender (attacker).The agents have their own assessment of the probabil-ity of the random outcome, respectively modeled through
pDpθ|d, aq and pApθ|d, aq. The Defender’s utility uDpd, θq isa function of her chosen defense and the outcome. Simi-larly, the Attacker’s utility function is uApa, θq.
3.2. Complete information. Game theoretic solution

In the standard complete information setup, the basicgame-theoretic solution does not require A to know D’sprobabilities and utilities, as he observes her actions.However, the Defender must know puA,pAq, the commonknowledge assumption in this case. Then, both agents’
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Figure 1. Template for basic two player sequential defend-attack gameBAID. White nodes affect solely the Defender; grey nodes affect only theAttacker; striped nodes affect both agents.

expected utilities ψApd,aq “
ş

uApa, θqpApθ|d,aq dθ and
ψDpd,aq “

ş

uDpd, θqpDpθ|d,aq dθ can be computed. TheAttacker’s best response to D’s action d, is a˚
pdq “arg maxaPA ψApd,aq. Such response is used to findthe Defender’s optimal game-theoretic action d˚GT “arg maxdPD ψDpd,a˚

pdqq. The pair `

d˚GT, a˚
pd˚GTq

˘ is aNash equilibrium and, indeed, a sub-game perfect equi-librium (Hargreaves-Heap and Varoufakis, 2004).In case of multiple best responses for the attacker givensome defender action d, a˚
pdq becomes a set. Ties are gen-erally broken either choosing the most favorable attackfor the defender, leading to a strong Stackelberg equilib-

rium (SSE) or choosing the worst attack for the defender,leading to aweak Stackelberg equilibrium. In what follows,whenever necessary, we shall assume that ties are brokenin favor of the defender, the standard solution in securitygames (Korzhyk et al., 2011).
3.3. Incomplete information. ARA solution

As discussed in the introduction, the complete informa-tion assumption will not hold in many security scenar-ios. When this is the case, the problem may be handledas an incomplete information game. The most commonapproach in such context approximates Bayes-Nash equi-libria, see Hargreaves-Heap and Varoufakis (2004) for de-tails. Alternatively, we use a decision analytic approachbased on ARA, that facilitates the defender to acknowl-edge the uncertainty she might have about the attacker’sjudgements puA,pAq. The Defender’s problem is depictedin Figure 2a as an influence diagram, where A’s actionappears as an uncertainty. With this, D’s expected utilityis ψDpdq “
ş

ψDpd,aqpDpa|dq da. Computing this requiresestimating pDpa|dq, D’s assessment of the probability thatthe Attacker will choose a after having observed d. Then,her optimal decision is d˚ARA “ arg maxdPD ψDpdq.Eliciting pDpa|dq is complex, as it possesses a strate-gic element. It is facilitated by analyzing A’s problemfrom D’s perspective (Figure 2b). In order to accomplishthis, the defender would use all information and judg-ment available about A’s utilities and probabilities. How-ever, instead of using point estimates for uA and pA to find
A’s best response to d, as in Secion 3.2, her uncertaintyabout the attacks would derive from modeling puA,pAq

ΘD A

UD

(a) Defender’s decision problem.

ΘD A

UA

(b) Defender analysis of Attacker problem.
Figure 2. Influence diagrams for Defender and Attacker problems.

through a distribution F “ pUA,PAq on the space of util-ities and probabilities. With no loss of generality, as-sume that UA and PA are defined on a common probabil-ity space pΩ,F,Pq with atomic elements ω P Ω (Chung,2001). This induces a distribution over the Attacker’s ex-pected utilityψApd, aq, where the random expected utilitywould be Ψω
A pd,aq “

ş

Uω
A pa, θqPωA pθ|d,aq dθ. In turn, thisleads to a random optimal alternative defined through

A˚
pdq

ω
“ arg maxxPA Ψω

A pd, xq. Then, the Defender wouldfind pDpa|dq “ PF
“

A˚
pdq “ a

‰

“ P
␣

ω : A˚
pdq

ω
“ a

( in thediscrete case (and, similarly in the continuous one).
3.4. Computation through APS

Computationally, ARA models entail integration and opti-mization procedures that can be challenging in many cases.Therefore, we explore the APS-based methods sketchedin the introduction.
An augmented distribution for the Defender’s prob-lem is introduced as πDpd, a, θq9uDpd, θq pDpθ|d, aq pDpa|dq.Its marginal πDpdq “

ş ş

πDpd,a, θq dadθ is proportionalto the expected utility ψDpdq and, consequently, d˚ARA “mode pπDpdqq. Thus, one just needs to sample pd,a, θq „

πDpd,a, θq and estimate its mode in d. In ? a Metropo-lis Hastings sampling procedure is introduced to providea Markov chain with states (d, a, θ) whose stationarydistribution is πDpd,a, θq. Under mild conditions, a con-venient mode estimate of the d samples generated con-verges to the ARA solution of the sequential game. Con-structing this Markov chain, requires the ability to sam-ple from pDpa|dq. To perform this sampling, an APS inthe space of the Attacker’s random utilities and probabili-ties is constructed. For a given d, the random augmented
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distribution built is Πω
A pa, θ|dq9Uω

A pa, θqPωA pθ|d,aq, itsmarginal Πω
A pa|dq “

ş

Πω
A pa, θ|dq dθ being proportionalto A’s random expected utility Ψω

A pd,aq. Then, the ran-dom optimal attack A˚
pdq

ω almost surely coincides withthe mode of the marginal Πω
A pa|dq. Consequently, by sam-pling uApa, θq „ UApa, θq and pApθ|d,aq „ PApθ|d,aq, onecan build πApa, θ|dq9uApa, θqpApθ|d,aq which is a samplefromΠApa, θ|dq. Then, modepπApa|dqq is a sample ofA˚

pdq,whose distribution is PF
“

A˚
pdq ď a

‰

“ pDpA ď a|dq, thusproviding a mechanism to sample from it.The type of computations underlying APS-based so-lution methods for ARA are illustrated in an example inSection 6.
4. Simultaneous Defend-Attack Games

4.1. Basic template

The simultaneous defend-attack game template is de-picted in Figure 3, with the same semantics as that ofFigure 1. Observe that arc D Ñ A is lacking, reflectingthat both agents act simultaneously in this case. As anexample, consider a national aviation security organisa-tion that randomly assigns undercover security guards onplanes to deter terror acts. In turn, a terrorist organisationmight board a member on certain planes to implementtheir malicious actions. The security consequences on agiven plane would depend on both agents’ decisions (pres-ence of security guard and terrorist on the plane).

D θ A

uD uA

Figure 3. Template for basic two player simultaneous defend-attack game.

In this case, the ARA approach would support D by solv-ing d˚ARA “ arg maxdPD
ş

ψDpd,aq ¨ pDpaq da where pDpaqrepresents D’s beliefs about what action awill the attackerimplement. In order to forecast it, consider the attacker’sproblem a˚
“ arg maxaPA

ş

ψApd,aq ¨ pApdq dd. Since welack knowledge about the attacker’s utilities and probabil-ities, we adopt a Bayesian approach and model our uncer-tainty through prior distributions (over possible utilitiesand probabilities) UApa, θq, PApθ|d,aq and PApdq definedover a common probability space pΩ,F,Pq with atomicelementsω P Ω. Then, the random optimal attack is
A˚

“ arg max
xPA

ż

Ψω
A pd, xq ¨ PωA pdq dd (1)

and make pDpA ď aq “ PpA˚
ď aq. This defines pDpaq, themissing ingredient in the Defender problem.Clearly, the above requires the specification of UApa, θq,

PApθ|d,aq, and PApdqs. Of these three ingredients, elicit-ing PApdq has a recursive component as we need to thinkabout how the attacker thinks about the defender, whichin turn begs for thinking about how the defender thinksabout how the attacker thinks about the defender, and soon. This leads to a recursion similar to the level-k schemedescribed in Rios and Insua (2012). As mentioned in theIntroduction, we shall only focus on level-2 thinking, al-though the scheme described extend to higher levels inthe thinking hierarchy.As in the sequential case, ARA models may be solvedthrough APS constructing augmented distributions. Thedistribution corresponding to the Defender’s problem is

πDpd, θ,aq9uDpd, θq ¨ pDpθ|d,aq ¨ pDpaq (2)
its marginal being πDpdq “

ş ş

uDpd, θq ¨ pDpθ|d,aq ¨

pDpaq dθda which is proportional to the expected utility
ψDpdq and, consequently, d˚

ARA “ modepπDpdqq. As in thesequential case, we can solve the problem sampling d, θand a from πDpd, θ,aq, and computing the mode of the d-samples. This sampling is performed using MCMC meth-ods. In particular, a Metropolis-Hastings is illustrated inAlgorithm 1. Notice that this approach requires the abilityto sample a „ pDpaq. To produce those samples, considernow the attacker random APS model, defined for eachωthrough
Πω
A pd, θ,aq9Uω

A pa, θq ¨ PωA pθ|d,aq ¨ PωA pdq (3)
Then, the random mode of the marginal of Πω

pd, θ,aqin a coincides with A˚, whose distribution is pDpaq.Consequently, by sampling uApa, θq „ UApa, θq,
pApθ|d,aq „ PApθ|d,aq and pApdq „ PApdq one canbuild πApa, θ|dq9uApa, θqpApθ|d, aqpApdq which is a samplefrom ΠApa, θ,dq. Then, modepπApaqq is a sample of A˚,whose distribution is PF

“

A˚
pdq ď a

‰

“ pDpA ď a|dq, thusproviding a mechanism to sample from such distribution.This procedure is illustrated in the sample_attack functionof Algorithm 1. Under mild conditions, we can prove theconvergence of the Algorithm to the ARA solution whenusing a consistent mode estimator, see Chacon (2020).
5. General Games

The previous sections dealt with relatively simple ARA tem-plates with basic sequences of defense and attack move-ments. However, such stylized settings may not be suffi-cient to cope with the complexities of many actual defenseand homeland security problems.As an illustration, consider the BAID in Figure 4. In it,the incumbent authorities decide how to allocate a givennumber of patrols to prevent land access to a place of in-terest (e.g. an airport) by a certain terrorist organization.This decision is referred to as D1. The terrorists observethe patrols’ display over a certain period and thus have
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function sample_attack(M, K, gA, UA, PA):
initialize : ap0qDraw uApa, θq „ UApa, θqDraw pApθ|d,aq „ PApθ|d,aqDraw pApdq „ PApdqDraw dp0q

„ pApdqDraw θp0q
„ pApθ|dp0q,ap0q

q

for i “ 1 toM do Ź Inner APSPropose new attack ã „ gApã|api–1q
qDraw d̃ „ pApdqDraw θ̃ „ pApθ|d̃, ãqEvaluate acceptance probability

α “ min
#

1, uApã,θ̃q¨gA
´

api–1q|ã¯
uApapi–1q,θpi–1qq¨gApã|api–1qq

+

With probability α set
pdpiq,apiq, θpiq

q “ pd̃, ã, θ̃q. Otherwise, set
pdpiq,apiq, θpiq

q “ pdpi–1q,api–1q, θpi–1q
q.Discard first K samples and record the mode ofinterest of the rest of draws tapK`1q, ..., apMq

u as
a˚.
return a˚

input: UA, PA,M, K, N, R, gD and gA proposaldistributions
initialize : dp0q

Draw ap0q
„ pDpaq using sample_attack(M, K, gA,

UA, PA)Draw θp0q
„ pDpθ|dp0q,ap0q

q

for i “ 1 toN do Ź Outer APSPropose new defense d̃ „ gDpd̃|dpi–1q
qDraw ã „ pDpaq using sample_attack(M, K, gA,

UA, PA)Draw θ̃ „ pDpθ|d̃, ãqEvaluate acceptance probability
α “ min

#

1, uD
´

d̃,θ̃¯¨gD
´

dpi–1q|d̃¯
uDpdpi–1q,θpi–1qq¨gD

´

d̃|dpi–1q

¯

+

With probability α set pdpiq,apiq, θpiq
q “ pd̃, ã, θ̃q.Otherwise, set

pdpiq,apiq, θpiq
q “ pdpi–1q,api–1q, θpi–1q

q.Discard first R samples and estimate mode of therest of draws tdpR`1q, ...,dpNq
u as pd˚ARARecord pd˚ARA.

Algorithm 1: MH based APS to approximate ARAsolution in the simultaneous defend-attack game.
knowledge of D1. Based on this, the terrorists decide whento access the place of interest with the intention of commit-ting an attack. This decision is referred to as A1. Whetherthe terrorists manage to access the airport without be-ing detected by the patrols is modeled through variable
S1. Provided that the terrorist have a successful access,their vehicles can still be detected before the attack is com-mitted (for instance, via helicopters supervising the area).Whether or not the terrorists’ vehicles are detected afterland access is modeled with the variable S2. If the terrorists

are indeed detected, they choose to change their attack-ing strategy (for instance, modify their target). The newattacking decision is denoted as A2. Simultaneously, theauthorities decide to allocate reinforcement patrols to fur-ther protect the airport. Based on these two decisions, theoutcome S3 models the (random) consequences of an even-tual attack. For each agent, there is a utility node whichassesses their consequences, respectively represented by
uD and uA in Figure 4. In particular, the defender’s util-ity uD (respectively, the attacker’s utility uA) will dependon her decisions D1 and D2 (respectively, his decisions A1and A2) and the results S1, S2 and S3. Moreover, this, orsimilar sequences of defense-attack movements, couldbe repeated across time, spanning over several planningperiods.

Note that within the general layout of the BAID in Fig-ure 4, we identify patterns of defence and attack moves asthose earlier described as basic templates. In particular,nodes D1–A1 correspond to the Seq D-A template. Simi-larly, nodes D1–A2 reproduce the backbone structure of aSim D-A template.

S1 S2

A2

D2

A1

D1

S3

uA

uD

Figure 4. ARA modeling of general BAID example.

In González-Ortega et al. (2019), a scheme for deal-ing with these structures was introduced adapting strate-gic relevance concepts from computational game theory(Koller, 2003), ARA methods (Banks et al., 2015), and clas-sic influence diagram reductions from Shachter (1986).However, the basic reduction operations, were essentiallyanalytic. Inspired by the reasoning in Appendix B, we re-place here such operations with APS schemes.
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5.1. Simulation based BAID reduction operations

The methods in González-Ortega et al. (2019) assess ana-lytically a BAID from an ARA perspective. First, they areused to decide whether we deal with a sequential or a si-multaneous block. Once such decision is made, we decidewhich ID reduction to implement, according to Shachter(1986)’s conditions. At a third level, we then implementthe required ID reductions until the incumbent block is re-duced. In such case, we start again finding the next blockto be treated, until all the Defender’s decision nodes arereduced.
ID reductions in the Defender problem (D-reductions)are as in Shachter (1986). On the contrary, ID reductionsin the Attacker problem (A-reductions) need to be modifiedto take into account the uncertainty about the attacker’sprobabilities and utilities. As before, without loss of gen-erality, assume that all involved random utilities UA andprobabilities PA are defined over a common probabilityspace pΩ,F,Pq with atomic elementsω. Thus, when in-voking them in reference toω, we designate them Uω

A and
Pω
A , respectively. The remaining notation is adapted fromShachter (1986) where: superscripts old and new refer toan element, respectively, before or after a BAID transfor-mation; and, for any node i, Cpiq designates its conditionalpredecessors (chance and value nodes), Ipiq its informa-tional predecessors (decision nodes) and Spiq its direct suc-cessors. Initially, we denoteΨω

A pxCpvqq “ Uω
A pxCpvqq, where

v refers to the value node. González-Ortega et al. (2019)provided their theoretical analytical descriptions whichwe briefly recall:
• A-Arc inversion. An arc pi, jq between chance nodes i and
j (for the attacker), satisfying Shachter (1986) condi-tions may be reduced with node inheritance as in con-ventional IDs. (Random) probability assessments arechanged by applying Bayes’ formula parametrically sothat
Pω
A
new

pxj|xC newpjqq “

ż

Pω
A
old

pxj|xC oldpjqqPω
A
old

pxi|xC oldpiqq dxi,
(4)

Pω
A
new

pxi|xC newpiqq “
Pω
A
old

pxj|xC oldpjqqPω
A
old

pxi|xC oldpiqq

Pω
A
new

pxj|xC newpjqq
.
(5)

• A-Chance node removal. A chance node i (for the at-tacker) satisfying Shachter (1986) conditions may beremoved with node inheritance as in conventional IDs.Note, however, that expectations have to be taken para-metrically so that we obtain (random) expected utilities.Prior to node i reduction, we have a (random) expected
utility Ψω

A
old

pxC oldpvqq associated with each combina-tion xC oldpvq of values for predecessors of v. After thereduction, we associate with v a new (random) expected

utility defined by
Ψω
A
new

pxC newpvqq “

ż

Ψω
A
old

pxC oldpvqqPω
A pxi|xCpiqq dxi.

(6)• A-Decision node removal. Under Shachter (1986) con-ditions, we may remove a decision node i (for the at-tacker) with node inheritance as in conventional IDs, bycomputing the expected utility of the (random) optimalalternatives, conditional on the values of its predeces-sors. (Random) optimal alternatives are stored through

Aω
i

˚
pxC newpvqq “ arg max

xi
Ψω
A
old

pxi, xC newpvqq, (7)
whereas their (random) expected utilities are

Ψω
A
new

pxC newpvqq “ max
xi

Ψω
A
old

pxi, xC newpvqq. (8)
Now the crucial observation is that for expected utilityoptimization purposes, the denominator in Bayes’ formulaoperates as a constant and we can just use the potential onthe right of the proportionality condition
Pω
A
new

pxi|xC newpiqq9Pω
A
old

pxj|xC oldpjqqPω
A
old

pxi|xC oldpiqq, . (9)
thus avoiding the costly arc inversions. Then, we cangroup all arc inversions and chance node removals prior toa decision node removal conceptually and, operationally,by multiplying the corresponding parameterized poten-tials and distributions. Next, we just multiply them by theparameterized utility function to obtain the parameter-ized augmented probability distribution, from which wemay sample to obtain a forecast of the attacker’s action asrequired.In a similar fashion, we can determine all arc inver-sions and decision nodes prior to a defender decision noderemoval, multiply her utility function by the product ofpotentials and distributions to obtain an augmented prob-ability distribution from which to sample the defender’soptimal decision at such stage.These APS modified operations would be integrated inthe operation and block scheduling scheme in González-Ortega et al. (2019) to provide an APS approach to generalBAIDs.
6. Example

An example illustrates the type of computations under-taken in APS for ARA in a simple sequential Defend-Attackgame. Consider an organization (D) that has to chooseamong ten security protocols: d “ 0 (no extra defensiveaction); d “ i (level i protocol with increasing protection),
i “ 1, . . . , 8; d “ 9 (safe but cumbersome protocol). A hastwo alternatives: attack (a “ 1) or not (a “ 0). Successful(unsuccessful) attacks are denoted as θ “ 1 (θ “ 0). When
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there is no attack, θ “ 0.
θ

d 0 1
0 0.05 7.051 0.10 7.102 0.15 7.153 0.20 7.204 0.25 7.255 0.30 7.306 0.35 7.357 0.40 7.408 0.45 7.459 0.50 7.50

(a)

a
d 0 1
0 0.0 0.501 0.0 0.402 0.0 0.353 0.0 0.304 0.0 0.255 0.0 0.206 0.0 0.157 0.0 0.108 0.0 0.059 0.0 0.01

(b)

θ

a 0 1
0 0.00 0.001 -0.53 1.97

(c)

d αd βd0 50.0 50.01 40.0 60.02 35.0 65.03 30.0 70.04 25.0 75.05 20.0 80.06 15.0 85.07 10.0 90.08 5.0 95.09 1.0 99.0
(d)

Table 1. a Def. net costs; b Successful attack probs.; c Att. net benefits; dBeta dist. parameters

Defender non strategic judgments. Table 1a presents costs
cD associated with each decision and outcome, based on a7Me business valuation; and 0.05Me base security costplus 0.05Me per each security level increase. Upon suc-cessful attack,D loses the entire business value. The proba-bilitypDpθ “ 1|d, aq of successful attack is in Table 1b (com-plementary values for unsuccessful attacks). D is constantrisk averse in costs, with utility strategically equivalent to
uDpcDq “ – exp p0.4 ˆ cDq.
Attacker judgments. The average attack cost is 0.03Me. Theaverage attack benefit is 2Me. An unsuccessful attack hasan extra cost of 0.5Me. Table 1c presents the Attacker’s netbenefit cApa, θq. D thinks that A is constant risk prone overbenefits, with utility strategically equivalent to uApcAq “exp peˆ cAq, with e ą 0.
Defender strategic judgments. D’s beliefs over A’s judg-ments are described through PA and UA. Assume A’s ran-dom probability of success is modeled as PApθ “ 1|d,a “1q „ Betapαd,βdq withαd andβd in Table 1d (with expectedvalues the pDpθ “ 1|d,aq in Table 1b). In addition, A’s riskcoefficient e is uncertain, with e „ Up0, 2q, inducing therandom utility UApcAq.In this case, for APS, as the cardinality ofD is small, onecan estimate the value of pDpa|dq for each d sampling fromthis distribution and counting frequencies of different at-tacks. Figure 5a presents such estimates p̂Dpa|dq. Next,the ARA solution for the Defender is computed. Figure5b presents the frequency of samples from the marginal
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Figure 5. Estimation of pDpa|dq through ARA

πDpdq. Its mode coincides with the optimal defense, d˚ARA “9. For this same example, the game theoretic solution un-der the complete information assumption is d˚GT “ 8. Bothsolutions differ as the informational assumptions are dif-ferent in both settings: the ARA decision appears to bemore conservative, as it suggests a safer but more expen-sive defense.
7. Discussion

APS based methods have already been proven successful insequential Defend-Attack games Ekin et al. (2022). In thispaper, we have extended APS to deal with general gamesrepresented as BAIDs from an ARA perspective. Sequentialand simultaneous defend-attack models paved the way todeal with general problems modeled as bi-agent influencediagrams. In Appendix A, we sketch how this methodol-ogy could be extended to work with n-stages sequentialgames. However, in this setting, APS is likely to sufferfrom the typical computational shortcomings of dynamicprogramming. Thus, studying scalable methods for solv-ing n-stage sequential games under the ARA perspectiveis an interesting avenue for future research. In addition,exploring the use of Hamiltonian Monte Carlo methodsfor APS in situations in which gradients of the utilities areavailable is also a promising future research line.We would like to finish acknowledging that the pro-posed approach will become specially relevant in a recentclass of security game theoretic models, especially underincomplete information, appearing in the emergent fieldof adversarial machine learning (Ríos Insua et al., 2020).Efficient scalable algorithmic approaches to solve typical
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problems in this new domain are essential. Moreover, ARAsolutions of such games turns out to be important, as com-mon knowledge assumptions rarely hold in AML.
8. Funding

Research supported by the AXA-ICMAT Chair in Adver-sarial Risk Analysis(PI David Rios Insua), the EOARD-AFOSR project RC2APD, GRANT 13324227 (PIs David RiosInsua and Tahir Ekin) and the STARLIGHT H2020 project101021797 (PI Nizar Touleimat). None of the funding bod-ies influenced on the design of this research and the writ-ing of the manuscript.
References

Banks, D. L., Aliaga, J. R., and Insua, D. R. (2015). Adver-
sarial Risk Analysis. CRC Press.Bielza, C., Müller, P., and Insua, D. R. (1999). Decision anal-ysis by augmented probability simulation. Management
Science, 45(7):995–1007.Brown, G., Carlyle, M., Salmerón, J., and Wood, K. (2006).Defending critical infrastructure. Interfaces, 36(6):530–544.Brown, G. G., Carlyle, W. M., and Wood, R. K. (2008). Opti-
mizing Department of Homeland Security defense invest-
ments: Applying Defender-Attacker(-Defender) optimiza-
tion to terror risk assessment and mitigation. NationalAcademies Press, Washington, DC:. Appendix E.Chacon, J. (2020). The modal age of statistics. International
Statistical Review, 88(1):122–141.Chung, K. L. (2001). A Course in Probability Theory. Aca-demic Press.Ekin, T., Naveiro, R., Insua, D. R., and Torres-Barrán, A.(2022). Augmented probability simulation methodsfor sequential games. European Journal of Operational
Research.French, S. and Insua, D. R. (2000). Statisticaldecisiontheory.Wiley.Gil, C. and Parra-Arnau, J. (2019). An Adversarial-Risk-Analysis Approach to Counterterrorist Online Surveil-lance. Sensors, 19(3).Gil, C., Rios Insua, D., and Rios, J. (2016). Adversarial RiskAnalysis for Urban Security Resource Allocation. Risk
Analysis, 36(4):727–741.González-Ortega, J., Insua, D. R., and Cano, J. (2019). Ad-versarial risk analysis for bi-agent influence diagrams:An algorithmic approach. European Journal of Opera-
tional Research, 273(3):1085–1096.Hargreaves-Heap, S. and Varoufakis, Y. (2004). Game the-
ory: a critical introduction. New York, Routledge.Harsanyi, J. C. (1967). Games with incomplete informa-tion played by “Bayesian” players, I–III Part I. the basicmodel. Management science, 14(3):159–182.Hausken, K. (2011). Strategic defense and attack of seriessystems when agents move sequentially. IIE Transac-
tions, 43(7):483–504.

Joshi, C., Aliaga, J. R., and Insua, D. R. (2020). Insiderthreat modeling: An adversarial risk analysis approach.
IEEE Transactions on Information Forensics and Security,16:1131–1142.Kadane, J. B. and Larkey, P. D. (1982). Subjective proba-bility and the theory of games. Management Science,28(2):113–120.Koller, D. Milch, B. (2003). Multi-agent influence dia-grams for representing and solving games. Games and
Economic Behavior, 45(1):181–221.Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., andTambe, M. (2011). Stackelberg vs. Nash in securitygames: An extended investigation of interchangeabil-ity, equivalence, and uniqueness. Jour. Art. Intell. Res.,41:297–327.Naveiro, R., Redondo, A., Insua, D. R., and Ruggeri, F.(2019). Adversarial classification: An adversarial riskanalysis approach. International Journal of Approximate
Reasoning, 113:133 – 148.Raiffa, H. (1982). The art and science of negotiation (2003
ed.). Cambridge, MA: Harvard University Press.Raiffa, H., Richardson, J., and Metcalfe, D. (2002). Negoti-
ationanalysis: The science andart of collaborative decision
making (2002 ed.). Cambridge, MA: Harvard UniversityPress.Rios, J. and Insua, D. R. (2012). Adversarial risk analysis forcounterterrorism modeling. Risk Analysis, 32(5):894–915.Rios Insua, D., Banks, D., and Rios, J. (2016). Modelingopponents in adversarial risk analysis. Risk Analysis,36(4):742–755.Rios Insua, D., Couce-Vieira, A., Rubio, J. A., Pieters, W.,Labunets, K., and G. Rasines, D. (2019). An adversarialrisk analysis framework for cybersecurity. RiskAnalysis,41(1):16–36.Ríos Insua, D., Naveiro, R., Gallego, V., and Poulos, J.(2020). Adversarial Machine Learning: Perspectivesfrom adversarial risk analysis. arXiv e-prints, pagearXiv:1908.06901.Rios Insua, D., Ríos, J., and Banks, D. (2009). Adversarialrisk analysis. Journal of the American Statistical Associa-
tion, 104(486):841–854.Roponen, J. and Salo, A. (2015). Adversarial risk analysisfor enhancing combat simulation models. Journal of
Military Studies, 6(2):82–103.Sevillano, J. C., Insua, D. R., and Rios, J. (2012). Adver-sarial Risk Analysis: The Somali Pirates Case. Decision
Analysis, 9(2):86–95.Shachter, R. D. (1986). Evaluating influence diagrams.
Operations research, 34(6):871–882.Stahl, D. O. and Wilson, P. W. (1995). On players’ modelsof other players: Theory and experimental evidence.
Games and Economic Behavior, 10(1):218–254.Wang, S. and Banks, D. (2011). Network routing for insur-gency: An adversarial risk analysis framework. Naval
Research Logistics (NRL), 58(6):595–607.Zhuang, J. and Bier, V. M. (2007). Balancing terrorism and

http://dx.doi.org/10.13039/501100001961
http://dx.doi.org/10.13039/100015464
http://dx.doi.org/10.13039/100000181
http://dx.doi.org/10.13039/100010683


Naveiro et al. | 9

natural disasters—defensive strategy with endogenousattacker effort. Operations Research, 55(5):976–991.

A. The n-stage Sequential Game
The proposed scheme for the two stage sequential Defend-Attack game extend to multiple stage games, informingour general approach in Section 4. Consider a general n-stage sequential game under incomplete information inwhich the defender moves first by choosing decision d1 P

D1. After observing d1, the attacker selects a2 P A2. Sub-sequently, the defender observes a2, and decides d3 P D3.Interactions between players continue until stage n. Afterall actions have been chosen, the uncertainty θ is resolved.In general, the distribution of θ depends on all actionstaken. For simplicity, denote by Si the sequence of actionstaken from stage i. For instance, if the defender movesat stage i, Si “ tdi,ai`1,di`2, . . . u, and Si–1 “ Si Y ai–1.Then, the defender’s beliefs about θ, given the sequence
S1, are encoded in the distribution pDpθ|S1q. In addition,denote the Defender’s (Attacker’s) utility at the i-th stageas uDipdi, θq (uAipai, θq).With this, at the first stage, the defender needs to solvefor d˚1 “ arg maxd1

ş

uD1 pd1, θq ¨ pDpθ|S1q ¨ pDpS2|d1q dθdS2,where pDpS2|d1q encodes the Defender’s beliefs about thesequence of actions starting at the second stage, given thatshe chooses d1 at the first stage. We define an augmenteddistribution over the space of decisions and uncertainties
πDpd1, θ, S2q9uD1 pd1, θq ¨ ppθ|S1q ¨ pDpS2|d1q: its mode in d1coincides with d˚1 . Thus, we could solve the problem gen-erating samples d1, θ, S2 „ πDpd1, θ, S2q and computing themode of the d1 samples.This requires generating sequences of actions given de-cisiond1, S2 „ pDpS2|d1. Note that we can writepDpS2|d1q “

pDpa2|d1q ¨ pDpd3|d1,a2q ¨ ¨ ¨ Thus, S2 can be sampled se-quentially, by first sampling a2 „ pDpa2|d1q, then d3 „

pDpd3|d1,a2q, and so on. Note also that:
1. For every i, pDpdi|d1,a2, . . . ,ai–1q is a point mass cen-tered at the solution of the i-th stage problem, which canbe computed using APS, as we did in the first stage prob-lem.2. For every i, sampling ai „ pDpai|d1,a2, . . . ,di–1q, re-quires solving the Attacker’s i-th stage problem. Letus illustrate how this could be done leveraging the ARAmethodology with the Attacker’s second stage problem.In such stage, after observing d1, a expected utility maxi-mizer attacker would choose

a˚2 “ arg max
a2

ż

uA2 pa1, θq ¨ pApθ|d1,a2, S3q

¨ pApS3|d1,a2q dθdS3.
However, the Defender is uncertain about theAttacker’s utilities and probability judgments.As we did in the 2 stage game, for a given d1,the random augmented distribution built is

Πω
A2 pa2, S3θ|d1q9Uω

A2 pa2, θqPωA pθ|d1,a2, S3qPωA pS3|d1,a2q,its marginal on a2 is proportional to A’s ran-dom expected utility. Consequently, by sampling
uA1 pa2, θq „ UA2 pa2, θq, pApθ|d1,a2, S3q „ PApθ|d1,a2, S3qand pApS3|d1,a2q „ PApS3|d1,a2q one can build
πA2 pa2, S3θ|d1q which is a sample from ΠA2 pa2, S3θ|d1q.Then, the mode of its marginal in a2 is distributed as
pDpa2|d1q, thus providing a mechanism to sample fromsuch distribution. Notice that modeling the Defender’suncertainty about pApS3|d1,a2q, entails constructing ahierarchy of decision-making problems.
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