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Abstract 
Modeling, one of the main pillars of good scientific research, is a long-standing multidisciplinary activity to understand and 
analyze complex systems. In this paper, the focus is directed toward conceptual modeling of multi-terminal seaports specialized 
in handling and treatment of intermodal transport units (ITU). These systems are complex with highly dynamic and stochastic 
behaviors and actors, therefore, studying them as a coherent whole or just analyzing one part by taking into account the high 
degree of integration among the different aspects and actors linked by a flow of activities, information, and interactions is a bet 
lost in advance without a well-defined design process. Several design approaches and methodologies have been proposed over 
the years, but nonetheless, there is still no agreement on how to conduct modeling of complex systems because they are of 
different kinds. In this line, this paper proposes a top-down approach for container and Ro-Ro terminals largely inspired by the 
Unified Process Methodology and refined through several research projects that we have been involved in. It gives some 
recommendations and guidelines as well as a helpful way to successfully build modular and consistent simulation models. To 
prove its efficiency, it was applied to a case study and the resulting models were validated by the subject matter’s experts. 
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1. Introduction 
Modeling is, above all, an art before being a science, 
where creativity, knowledge, and experience play a 
significant role. While much has already been written on 
this topic, there is still no agreement on how to conduct 
modeling of complex systems. This is understandable 
because actually complex systems are of a different 
nature and structure as well as the purposes behind 
modeling being many. However, designing models is no 
mean feat, and a roadmap for modeling needs to be 
defined first. To this end, this paper proposes a top-down 
approach consisting of four steps that starts from the 
requirement analysis down to the simulation model 

implementation through a set of artifacts and diagrams. 
This design approach could be seen as an instance of the 
Unified Process (UP), and is specially defined for Ro-Ro 
and container terminals, but it might be applied to other 
system types depending on how similar they are to the 
studied systems.  

1.1. General background 

For many decades, complex systems have constantly 
attracted the attention of the scientific community as 
they are a source of complicated problems. Generally 
speaking, a system is designated as complex when its 
behavior is intrinsically difficult to predict due to the 
high interconnections among its components evolving in 



10 | 20th International Conference on Modelling and Applied Simulation, MAS 2021 
 

 
a stochastic environment toward achieving individual 
and/or collective objectives. Hence the interest in 
investigating such systems to come up with appropriate 
solutions for complicated problems thereof. 

Here, the focus is on the modeling and analyzing of 
maritime multi-terminal seaports specialized in 
handling and treatment of intermodal transport units 
(ITU) (see Figure 1). A multi-terminal seaport is a well-
structured and sensitive system where wheeled and 
containerized freights are subjected to multiple 
processing and handling operations before being 
delivered to their outgoing transportation modes. 
Usually, these operations are performed within an 
uncertain and vulnerable environment, and sometimes 
under a lack of information needed for sound planning; 
consequently undesirable situations could arise. The 
stochastic aspect of maritime terminals stems also 
from unforeseen perturbations and risks arising after 
human errors or other uncontrollable factors. 

To come up with consistent and relevant models for 
such systems, the appropriate modeling approach 
should be selected in terms of the studied system 
characteristics as well as the purposes behind the 
study. According to Günther and Kim (2005) and Garro 
and Russo (2010), conceptual modeling and multi-
agent systems (MAS) are promising and suitable 
approaches for designing and analyzing logistic 
systems and have easily found their way to container 
terminal applications. Combining both of them gives 
birth to so-called multi-agent-based simulation 
models (MABS). With such models, individualities and 
emergent phenomena can be easily captured in 
addition to the collective behaviors, which give a closer 
image of reality and thus lead to a thorough 
understanding of system functioning. 

1.2. Issue under focus 

Going from an informal description that could be 
misunderstood to a well-formalized representation of a 
complex system is in itself a puzzle; that is, a roadmap to 
simplify the modeling process is strongly needed. As 
human beings, we can spontaneously design in the mind 
very simple representations of systems to face daily 
situations (i.e., forming mental images of systems) 

without the need to a modeling process to make it, but 
when more details and complexity are considered, such 
as interactions, environmental impacts, behaviors, 
system composition and evolution, constraints, etc., it is 
easy to get lost along the way in modeling or even not 
know where to start. Indeed, through the help of a 
modeling approach and using the proper level of detail, a 
careful analysis of both the quantitative and qualitative 
aspects of the studied system could be carried out.  

In the literature (Bresciani et al. 2004; Garro and 
Russo 2010; and Fortino and Russo 2012), there is no 
unanimity on a specific modeling process to build 
models; however, from our point of view, we believe 
that the conception of models may depend on three 
influencing factors: system designer awareness and 
perspective, the nature of the studied system and the 
level of abstraction. 

In fact, system designers can come up with different 
models for the same system relying not only on their 
experience but also on their creative spirit. Moreover, 
complete knowledge about system functioning is 
essential for a smooth transition process, and any lack 
of that obliges the designer to make use of abstraction 
and assumptions to build consistent designs. Besides, 
the structure of any design is usually established 
according to the purposes for which the system is being 
modeled. For instance, business management software 
generally follows the MVC architectural pattern, while 
simulation models are usually based on Discrete Event 
System Specification. The structure of the model also 
relies on the studied system itself. Each system has its 
own characteristics, composition, and aspects, so the 
model should comply as much as it is potentially 
possible with these elements to be a realistic image of 
its corresponding system.  

Although the model is designed to act as much as 
possible as the reference system, it generally 
represents only a part of reality because of abstraction. 
The abstraction is applied to hide out of scope aspects 
(narrowing the scope of the study) or a lack of 
knowledge as well as to reduce system complexity in 
order to catch only essential elements for the study’s 
purposes. However, the abstraction has a significant 
impact on the results’ accuracy as the more the 
abstraction increases, the more the accuracy of the 
results decreases. On the other hand, the lower the 
abstraction level, the more complex and time-
consuming the designing and modeling process. Thus, 
the choice of the suitable abstraction level is a reply to 
the following questions:  

• What is the designer looking for? (i.e., designer’s 
purposes). 

• What knowledge is available about system 
functioning? (i.e., knowledge availability).  

Therefore, to build a consistent virtual 
representation for complex systems, and particularly 
for Ro-Ro and container terminals, this paper 

Figure 1. Norvik multi-terminals seaport: Ro-Ro and 
containers terminal 



Abourraja et al. | 11 
 

 

introduces a design approach composed of four steps 
that starts with a requirements analysis down to a 
simulation model implementation through a set of 
linking diagrams and artifacts. This approach is applied 
to the Norvik seaport terminals (see Figure 1). While the 
main steps are already specified in the literature 
(Kruchten 2004; Garro and Russo 2010; and Fortino and 
Russo 2012), the modeling activities in each step and 
the transition mechanisms linking the steps to one 
another are still a matter of debate among the scientific 
community. This paper intervenes in this debate by 
proposing a model-driven design approach for Ro-Ro 
and container terminals. It gives some 
recommendations and guidelines to successfully 
perform each step as well as the sub-steps of modeling 
to facilitate transitions between the steps in order to 
end with consistent simulation models for container 
and Ro-Ro terminals.  

The remainder of this paper is organized as follows. 
The next section highlights the proposed approach, 
sections 3 to 6 illustrate in depth each step of our 
approach, successively. The last section discusses the 
approach and concludes the paper. 

2. Proposed modeling approach: an overview 
In line with the aforementioned factors, we defined a 
top-down approach (see Figure 2), with a set of steps: 
inception, analysis, conception, and implementation. 
Most of the reviewed approaches can be staged into these 
four steps. Bresciani et al. (2004) introduced an agent-
based methodology for software development (Tropos) 
inspired from the well-known methodology “Unified 
Process” (Kruchten 2004) while adapting its artifacts to 
design agent-based software. Garro and Russo (2010) 
proposed a methodology to design MABS models for 

complex systems. The methodology contains six steps: 
system analysis, conceptual system modeling, 
simulation design, simulation code generation, 
simulation set-up and simulation execution, and results 
analysis. The first step is about requirement definition 
(inception) and analyzing of system behavior. The 
second and third steps concern the conception of the 
simulation model. From the fourth step until the last one, 
the implementation and model testing are carried out. 
Kubera et al. (2011) illustrated an approach divided into 
four steps called “Interaction-Oriented Design of Agent 
simulations” (IODA) to build simulation models. This 
approach focuses mainly on modeling agents and their 
interactions in complex environments. In Fortino and 
Russo (2012), an agent-based methodology of three 
phases named “ELDAMeth” was introduced. Here, the 
first phase includes the inception and system analyzing 
activities. The last phases are about conception and 
implementation, respectively. Other approaches and 
methodologies have been proposed; interested readers 
can see: Gaia (Wooldridge et al. 2000), Prometheus 
(Padgham and Winikoff 2002), etc. At the end, all of these 
approaches provide guidelines, recommendations, and 
tools to build gradually agent-based models from 
scratch.  

Our approach goes in this direction; however, it is 
interested especially in making models for Ro-Ro and 
contains terminals. But we believe that the presented 
material might be applied to other system types 
depending on how similar they are to the studied 
systems in this paper. As illustrated in Figure 2, the 
process of development ensures a progressive 
conceptualization of the complex system through a set 
of formal diagrams linking the steps to each other to 
end with a well-defined representation. The forward 
and backward transitions over the steps, in case of 
incomplete or erroneous details, allow the model to be 
further refined and more realistic. For example, in the 
conception step one can notice that certain insights 
included in the previous step are not enough to go 
further in coding the models. In the first step, a very 
abstract image of the system is obtained, then more 
details and insights are captured in the second step to 
end with a thorough understanding of the system’s 
functions so that system components can be 
conceptualized in terms of agents, objects, processes, 
messages, etc. to build a conceptual virtual 
presentation, i.e., a model, of the reference system that 
should be easy to implement. It should be noted that the 
sub-steps in each step could be achieved in a parallel or 
sequential manner. 

The steps of this approach are mainly established and 
defined following the “Unified Process” methodology 
(Kruchten 2004). The sub-steps are inspired by the 
reviewed approaches and are a concretization of gained 
experience and feedback through several conducted 
research projects on building simulation models for port 
terminals: (1) the hinterland terminal of Le Havre 
seaport (Abourraja et al. 2017; Abourraja et al. 2018; 
Rouky et al. 2018); (2) a rail-road container terminal 

Figure 2. The proposed design approach 
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(Abourraja et al. 2019; Benantar et al. 2020); The main 
novelty of this approach is introduced in Section 5. 

3. Step I: Inception 

This initial step, also called requirement analysis, is the 
basis of our design approach with the aim of answering 
“who” and “what” questions regarding our studied 
systems. Here, the issue is not about drawing a holistic 
picture on system functioning and composition, but 
rather about collecting the details and knowledge needed 
to design a model that fits with the study´s objectives. To 
this aim, first of all, the objectives and purposes are 
enumerated, then the system context and boundaries are 
delimitated to identify relevant actors and components, 
and finally the functional and non-functional 
requirements deserving attention are captured. 

At this early stage of modeling, the designer has only 
a fuzzy picture on the studied system and is unaware of 
which aspects are worthy of interest. Thus, before 
starting, it is of paramount importance to examine the 
available documentation either in the literature or that 
provided by system’ stakeholders in addition to having 
a meeting with them and on-the-spot visits to the 
studied systems. With these activities, a general idea 
and enough knowledge on the studied system with 
insights on research progress and trends could be 
acquired to move further with the modeling. Despite 
that, some collected facts might be ambiguous or 
incomplete, which is quite comprehensible since they 
are incrementally refined, adjusted, and extended as 
the development steps and iterations are carried out. 
The key concepts in this step are: actors, entities, use 
cases, and objectives. As for functional and non-
functional requirements, they specify the individual 
functions of the system (i.e., what the system does) and 
the recommendations to operate those functions (i.e., 
how the system should do it), respectively. As a bridge 
for the next step, the functional and non-functional 
requirements are clearly specified in terms of use cases 
and mapped to their respective actors to make up the 
use case diagram. 

3.1. Objectives and assumptions  

The intrinsic purpose of simulation models is obviously 
to mimic the behavior of real systems narrowed to a 
proper level of realism. More precisely, the degree of the 
represented reality in simulation models is seen as one of 
the keys to success, especially from the end-user’s point 
of view. However, representing some parts of reality 
could be meaningless to the designer because they have 
no impact on the desired outputs. Thus, operations and 
actors that have no relation to the planning and 
execution of processing and handling operations inside 
the system are not considered (e.g., food and energy 
suppliers, firefighters, cleaners, security services, etc.). 
Furthermore, to investigate accurately the performance 
of the system, a microscopic representation of the 
studied systems must be designed; that is, a low level of 
abstraction is chosen. On the other hand, some complex 

behaviors could be aggregated into more simple forms 
while maintaining the realism of the model in order to 
reduce the complexity of the design. Thus, driver 
behaviors and physical phenomena (road and air 
friction) are defined as probability distributions of times 
and speeds of handling and transportation equipment. 
Moreover, the risks are regular (delays, failures, 
interference, collisions, congestion, etc.) or irregular 
(natural disasters, explosions, leakages of liquids or gas, 
etc.). The last risk type is excluded. 

Otherwise in this study, the following assumptions 
are made:  

• Ship-train stowage plans are assumed to be known. 
• Outgoing trucks for some import ITUs might be 

unknown when they arrive at the terminal from the 
sea; this is specified a few hours before the arrival 
of trucks. 

• Reachstacker scheduling comes before the 
scheduling of straddle carriers of the inland pool.  

3.2. System context and description  

The maritime terminal’s operator plans handling 
operations according to the upstream information 
received from shipping lines and inland transporters. 
This information contains detailed descriptions on 
incoming flows. Sometimes, false declarations of ITU 
contents could be made to hide illicit freight intended to 
unlawful activity. To thwart such illegal activity, 
terminal and port authorities, customs services, and 
other governmental agencies work together to identify 
suspicious ITUs to be inspected by customs in a dedicated 
area in the terminal using X-ray scanners and/or manual 
inspection.  

There are three types of flows. First, the import flow, 
also called inbound flow, is received from the sea, then 
routed to landside to be evacuated to the hinterland 
destination. Conversely, the export flow (outbound 
flow) is collected from trains and trucks to be 
subsequently loaded on or into sea-going ships. The 
last type is a particular flow labeled “transit flow” that 
is unloaded from ships and loaded on to or into other 
ships (i.e., transshipments among same-type modes). 
The coordination of these flows is the role of transport 
service providers as the major actors of the supply 
chain, which also schedule transportation means’ 
round trips. 

A slight summary on maritime terminals was given 
in the Introduction (see Figure 1). From a physical 
viewpoint, the studied system is composed of two 
terminals: the container part and ro-ro part. Each 
terminal is a set of interconnected operating areas, 
namely seaside, internal yard, and inland-side. These 
areas are interrelated by a road network. The inland-
side of the container part differs from that of the ro-ro 
part. The first one is subdivided into two sub-areas, 
rail-side and road-side, whereas the second one has 
only a road-side. The seaside, commonly called quay 
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side, is where ships are moored to berths, then handled 
by quay cranes in the case of containers and unloaded 
by internal tractors via linkspans in the case of trailers. 
Additionally, certain external trucks (not detachable 
trucks, here named lorries) can drive on to or off ships 
on their own. The landside is a zone where operations 
on trucks and trains take place. In the road-side, both 
ro-ro trucks and container trucks enter and leave the 
terminal by entry and exit gates. Moreover, incoming 
full trucks are first oriented to the security check hall 
for security and weight checking before accessing their 
respective terminal. Container trucks are unloaded by 
straddle carriers within an area arranged for that 
purpose near the gates (XT-handover area). Regarding 
trains, they are lined up on parallel tracks at the rail-
side and processed by reachstackers. Finally, in the 
internal yard, straddle carriers temporarily pile up 
containers in blocks whilst internal tractors line up 
inbound trailers in parking lots. Physically, blocks are 
interspaced areas consisting of a set of interspaced 
lines composed of stacks with n tiers, whereas parking 
lots are interspaced lines composed of spots. 
Concerning outbound trailers, they are dragged 
directly to parking lots by their external tractors. 

From a functional viewpoint, maritime terminals are 
classified into four subsystems: the ship-to-shore 
subsystem (seaside operations), horizontal-transport 
subsystem (transport operations), storage subsystem 
(internal yard operations), and delivery-receipt 
subsystem (landside operations). The transport 
subsystem is the artery of the terminal as it connects all 
the components to each other, which gives rise to the 
problem of subsystems’ synchronization; that is, poor 
synchronization between the transport subsystem and 
the other ones will slow down the performance of the 
whole system. These subsystems are governed by a set 
of decisions hierarchically structured into different 
levels. Firstly, the tactical level covers decisions about 
equipment deployment and seaside resource 
allocation. Secondly, the operational level includes 
decisions about day-to-day operations. Finally, the 
real-time level regroups very short-term decisions like 
equipment routing and storage management. In this 
paper, the strategic level is not considered since it 
concerns decisions about location and layout design 
problems.  

As regards equipment and ITU, they are split into 
active and passive equipment (Stahlbock and Voß 
2008), and movable and driven ITU, respectively. A 
decision’s quality and performance is measured using 
key performance indicators (KPI). These KPI concern 
mainly times, moves, resource utilization, energy 
consumption, and costs (Kemme 2013). Other KPI could 
be considered. Furthermore, the performance of the 
terminal depends not only on the optimization of 
resources and equipment utilization but also on its 
customers' satisfaction. 

3.3. Use case specification 

A use case is either simple or composite, and those 
identified as simple are enclosed in composite ones. For 
instance, “unloading containers from/to ships” and 
“transferring containers to/from the shore” are 
embodied in “handling container ships”. In the 
literature, two stereotypical relationships between use 
cases are reported (Kruchten 2004): include and extend 
relationships. The first one is used to indicate common 
parts of behaviors among several use cases. As an 
example, “handling container ships,” “handling trains,” 
and “container storing” included the use case 
“interference avoidance” (called internal case), because 
equipment always keep a safe distance from one another 
to avoid risky situations during handling operations. The 
second relationship is lighter than the first one and 
means that the use case could call other ones to extend 
its behavior. For instance, during ro-ro-ships loading, 
internal tractors leave trailers in pre-boarding areas if 
the queue to the ship is too long in order to bring the 
remaining trailers, so as to minimize unproductive 
waiting times. Likewise, in the case of lorries (not 
detachable trucks), trailers are positioned in parking 
spots without being decoupled from their tractors. There 
is another kind of relationship that could be stated which 
is quite similar to “include” except that it is implicit. In 
fact, handling and transport operations (equipment) are 
strictly based on decisions made at the scheduling and 
planning level (planner); however, they are carried out by 
different actors; besides, the execution of the former 
ones does not immediately involve the latter ones and 
vice versa. Therefore, it is safe to say that actors in charge 
of scheduling and planning will have control over actors 
executing handling tasks.  

In regard to actors, they can cooperate and 
coordinate to handle a use case (e.g., fraudulent ITU 
targeting), or they can just be linked to the same use 
case without any particular relationships between 
them. For example, straddle carriers and trucks both 
transport containers but do not communicate to 
perform this task. Actors are people, equipment, or 
other systems as illustrated in the previous sub-
sections. In this study, some actors are seen as one 
single unit in spite of there being more, because we 
have no interest in their individuality. This concerns 
the port authorities, terminal operators, labor, 
dockers, transport service providers, the customs 
service, governmental agencies, and simulation end 
users. The other actors are categorized into three major 
classes: handling equipment, transport equipment, 
and transport modes.  

4. Step II: Analysis 
At this stage of modeling, “how?,” “why?,” “when?,” 
and “where?” questions are the main concern in order to 
investigate deeper the features and components of the 
studied system so as to reach a firm understanding of 
system functioning. To this aim, a meticulous and careful 
analysis of the defined use cases is the artery to 
determine the dependencies and relationships among 
the involved entities as well as the streams of the 
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executed actions. In this study, we consider an action as 
the smallest piece of treatment executed by an actor. This 
first sub-step of analyzing is translated into orthogonal 
and graphical views to gain more visibility following the 
dictum “a picture is worth a thousand words.” As the 
fruit of labor of this step, the produced views in the 
second sub-step are aggregated to form the global 
model. This work-product is a preliminary simplified 
representation of the system which constitutes the 
foundation of the simulation model.  

4.1. Use case unrolling  

The analysis begins with a textual description organized 
in fields where the story of the use cases is explicitly and 
plainly told. Cockburn (2000) suggested some guidelines 
for breaking up use cases. In the first place, start with 
listing all the actors participating in any way in the use 
case. In the second place, give an overview on the 
mainstream of the use case (named basic flow), which is 
the common sequence of actions up to the goal. In the last 
place, write all alternative streams to the basic scenario 
while citing all exceptions, extensions, or events causing 
these deviations. The benefits of this practice are not only 
easy unrolling and situating of use cases but also the 
capture of redundant parts to induce other use cases, so 
the artifact of the previous step can be more refined. 
However, there is no standardized form for this exercise; 
text documents, text bubbles with annotations, tables, or 
other forms can be used. In this work, the choice fell on 
tables with eight fields (rows). To keep the length of this 
paper reasonable, the fields are enumerated and 
illustrated below instead of drawing up each table. Note 
that this is not exhaustive; some fields could be removed 
and others added (see Cockburn 1998; and Sindre and 
Opdahl 2001):  

• ID-title: here, is about labeling and assigning an ID 
to use cases. For example, 
“1.road.gate.in.management,” is the first process 
in the truck activity. 

• Main actor/Secondary actors: these two fields 
reveal all the actors, whether the main actor, who 
is responsible for executing most of the actions of 
the use case, or secondary actors, who only 
participate in one of the actions. For instance, the 
planner orders the labor to decouple a train. In this 
case, the main actor is the labor, who perform the 
majority of the required actions, whereas the 
planner only sends the order and oversees the 
smooth running of the actions. The planner is the 
most involved actor in our system’s use cases, 
followed by internal equipment either as main or 
secondary actors. 

• Pre-conditions/Post-conditions: the first one are 
the conditions that ought to be satisfied to launch 
the use case. They refer to the state in which the 
system should be in beforehand. Unlike pre-
conditions, they point out the system’s state after 
the end of the use case. Both these fields make it 

possible to link the use cases together like a linked 
list, since the post-conditions of the prior use cases 
could be the pre-conditions for subsequent ones. 
Most pre-post-conditions are: arriving at the 
terminal, reception of the arrival notification, 
leaving the terminal, achieving a process or action, 
the emergence of phenomena (failures, repairs, 
delays, etc.), etc.  

• Constraints: constraints are of two types: weak and 
strong. The strong constraints are the 
requirements to be respected during the execution 
of the use case, otherwise an exception is raised 
(blocking event). They are defined to ensure the 
correct behavior of the model (e.g., equipment-
resource size and capacity, task precedence, time 
window, retrieved order, storage constraints, 
container type segregation, etc.) and to avoid risky 
situations (e.g., non-interference, ship stability, 
safe distances, speed limits, etc.). Sometimes one 
constraint becomes trivial in order to respect a 
stronger one. Regarding weak constraints, they do 
not represent any blockade for the system’s 
processes, yet they should be taken into 
consideration for better performance of 
operations, i.e., synchronization of operations, 
maximizing resource utilization, evenly spread 
workload among resources and equipment, etc. 

• Basic stream/Alternative streams: all possible 
scenarios should be spelled out along with the 
switching points between them. A scenario is a 
series of actions executed in a precise order, 
written in a simple and factual style. Each action 
can be associated to some events or conditions, 
and/or can undergo constraints in resource usage. 
As a rule, a use case has only one basic stream and 
could have multiple alternative streams.  

Although a wealth of information is gained thanks to 
these descriptive fields, a picture is still worth a 
thousand words. Furthermore, the control flow 
elements (e.g., if-else conditions, loops, join and fork 
nodes, and transitions) are missing and parallel 
streams of actions are barely distinguishable in the 
textual description. Thus, to get enough visibility on 
use cases’ execution, the scenarios are transformed 
into activity diagrams. In addition to enhancing 
visibility, this diagram highlights graphically the 
synchronization and connections between the use 
cases. 
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4.2. Global design of the model 

In Figure 3, the global activity diagram highlighting the 
dependencies among the pillars of our simulation model 
is exposed in a formalized form (UML specifications). 
This simplified representation is an aggregation of the 
elaborated activity diagrams. Three pools of activities are 
distinguished, namely truck activity, train activity, and 
ship activity. These activities hold the model and are a 
blend of decisions and operations albeit each operation 
can be ruled by a couple of decisions. 

For trains and ships, the planning starts before their 
arrival at the terminal. First, the needs are determined 
in order to assign suitable resources and an eligible 
amount of equipment. For container ships, the yard 
housekeeping is carried out to move containers to 
blocks nearer to the berthing place of their respective 
outgoing ships so that later unloading operations will 
be speeded up. Once the train or ship reaches its 
reserved position, the handling starts. The import ITUs 
are unloaded, then transported to their position inside 
the internal yard. Conversely, export ITUs are brought 
from the yard to be loaded on their respective outgoing 

Figure 3. Global simulation model 
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mode. When the handling is over, the train or ship 
releases its place and leaves the terminal. 

As concerns trucks, there is no pre-planning, 
decisions about resource and equipment allocation are 
executed once they arrive at the terminal. Container 
trucks are oriented toward their handover area where 
they are served. Once the receipt-delivery operation is 
achieved, the truck leaves the terminal. The Ro-Ro 
trucks undergo a different process depending on their 
type. In the case of trailers, they are moved and parked 
by their own tractor inside the yard and when loading, 
internal tractors come and grasp the trailers to drive 
them onto the ship. Oppositely, during the unloading, 
internal tractors remove trailers from the ship and park 
them in the yard to be retrieved later by external 
tractors. As for lorries, they enter and drive off ships on 
their own, and they are lined up in a dedicated waiting 
area before loading. More details were given in sub-
sections 3.2 and 3.3.  

5. Step III: Conception 
So far, only a mesoscopic description of individual 
behaviors and settings has been given. In this step, the 
idea is to put emphasis on the conceptualization of the 
lower level of the system to develop a microscopic 
specification of our simulation model. The first sub-step 
is modeling the system entities and their individualities. 
Then, the processes are enriched with a full definition of 
inputs-outputs (i.e., data), and triggering and un-
blocking events (i.e., messages, conditions, constraints, 
etc.). Meanwhile, based on functional and organizational 
decomposition, the system classification is carried out 
with the aim of reducing the system’s complexity. At the 
end of this step, the global design of the model is refined 
and enriched with the improving artifacts so as to end 
with the conceptual model, i.e., the simplified 
representation to implement (linking to the next step). 
This updated representation outlines the way in which 
the considered part of reality will be reproduced.  

5.1. System entities  

In this approach, an entity is the basic modeling unit of 
the considered components of the studied system; each 
entity is characterized by its own independent way of 
existence that can be either active, reactive, or passive. 
Active entities are modeled as agents having goal-
oriented behaviors to be able to act and interact with the 
environment and other entities. Reactive entities are 
those having stimulus-response behaviors to constantly 
change their internal state (physical condition) as a 
consequence of actions done by certain agents (e.g., 
moving). These entities are modeled as dynamic and 
immobile objects without specific goals. As regards 
passive entities, they are inactive objects equipped only 
with manipulation-based methods, principally used to 
represent data structures. Furthermore, the mechanism 
of communication, stimulus, and other ways of 
interaction among entities or activities are specified by 
messages and events.  

To build agents, we adopted, with a few changes, the 
“Entity-Control-Boundary” (ECB) design pattern 
(Bruegge and Dutoit 2009), for the purpose of 
structuration of agents and facilitating their 
implementation (see Figure 4). The adapted form of 
ECB is as follows: 

• Model (entity): its original name is “entity” but 
here it is renamed to “model” to avoid possible 
confusion with the definition of entity in this paper. 
It is used to represent operating plans, queues, 
lists, terminal infrastructural resources, and 
database tables that are manipulated by the agent. 
In short, this stereotype symbolizes data and can be 
only associated to control classes or other model 
classes. 

• Control: includes the logic of the agent and the 
treatment methods for Model classes. Indeed, a 
behavior is a series of actions executed to 
manipulate entities according to the logic of the 
agent and to change its internal state. Thereby, the 
Control class is the bridge that connects Behavior 
to the Model. Control classes can be associated with 
all stereotypes, however, a control class of an agent 
cannot be linked to that of another agent, because 
interactions between agents are only done through 
behaviors. 

• Behavior: the term "Boundary" is replaced by 
"Behavior" since the interface of an agent is its 
behaviors. Behavior classes are used to feed the 
methods implemented in the Control classes with 
parameter values, to define roles and states of 
agents, and obviously to communicate. In addition, 
a behavior can be composed of sub-behaviors. 
Basically, agents possess three behaviors: 
listening, sending, and standing by; for reception 
and transmission of messages, and to wait for 
upcoming jobs when they have achieved their 
current workload, respectively.  

5.2. System classification 

Figure 4. Model-Control-Behavior (MCB) Meta-Model 
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Seeing that the studied systems are large-scale, 
distributed, and well-structured systems, the divide and 
conquer principle is called to deal with this high 
complexity by the way of splitting the whole into smaller 
and manageable sub-models or systems. Each sub-
model is constructed of homogeneous components in 
order to play distinct roles and to be different from the 
others as well. All these sub-models are then plugged 
together using well-defined connections to act as a 
coherent unit to achieve the main goal for which the 
whole system is designed. 

From the above description of maritime terminals, 
these basic roles can be distinguished: operating 
(processes), planning (decisions), generating (ITUs 
and transport means), displaying (key performance 
indicators), supporting (facilities), and executing 
(equipment and labor). Therefore, the global model is 
split into five main sub-models (sub-models can be 
also composed of sub-parts and so on): 

• Agent sub-model: this represents equipment and 
labor. Agents inside this subsystem are at the beck 
and call of the controlling sub-model. There are 
four types of representative agents modeled as 
abstract classes: labor, handling equipment, 
transport equipment, and transport means. This 
means that these agents are not instantiable, but 
their properties and behaviors are inheritable. The 
instantiable agents are quay crane, straddle carrier, 
reachstacker, internal tractor agent, maneuvering 
agent, maintenance agent, train agent (composed 
of locomotive agent and wagon agent), ship agent, 
and truck agent (composed of external tractor 
agent and trailer agent). Handling and transport 
equipment agents have a behavior named 
“handling” to perform their tasks; also, labor is 
equipped with an additional behavior named 
“maneuvering”, but the transport means agent 
does not possess any further behaviors. All of these 
agents have the behavior “Moving” in common.  

• Object sub-model: this represents terminal 
facilities. Objects are unsociable entities without 
any awareness of their environment, yet they could 
be reactive. The philosophy behind the 
organization of objects' classes is quite similar to 
that of agents. The objects are mainly derived from 
either the abstract class “Operating Zone” 
(seaside, railside, roadside, and internal yard), 
“Resource” (berth, path, linkspan, slot (truck 
handling position, handover position, parking 
spot, and parking position), gate, weighbridge, and 
scanner), or purely “Area” (customs office and 
cell). An Operating Zone is composed of Resource 
and/or Area, albeit being itself an Area. In addition, 
an area is a set of interrelated cells (i.e., a grid), so 
the basic element of any area, reciprocally any 
resource, is a Cell object. This class is equipped with 
a “finite-state machine,” which can be seen as a 

behavior. The Cell objects are able to measure 
constantly the degradation caused by operations 
(moving, dropping off containers, storing, 
parking, etc.) on the basis of the applied force or the 
degradation rate over time. When the Cell exceeds 
its endurance threshold (the physical condition 
index is under the minimum value), it shifts to a 
Failure state; therein an exception is thrown to 
inform the controlling sub-model. The cell returns 
back to its original state once the intervention of 
the maintenance agent is over. 

• Controlling sub-model: this is the brain of the 
system seen as the more complicated and smarter 
sub-model since it imitates the terminal planner’s 
reasoning as well as transport service providers. 
This workload is shared between these three 
agents: planner agent, logistics provider agent 
(LPA), and customs agent. As the major actor in our 
system, the planner agent is aware of all necessary 
information to work out the operating plans and 
decisions to be sent to representative agents. The 
role of the LPA revolves around the generation and 
synchronization of the physical flows. The LPA 
puts in motion transport means and informs the 
planner about the arrival dates of ships and trains a 
few days ahead for the purpose of tactical planning 
and the trucks arriving on the same working day. As 
regards the customs agent, its role is to find 
suspicious ITUs and to check whether they are 
fraudulent or not.  

• Operating sub-model: as indicated by its name, 
this simulates the terminal’s operations, where 
evolve facilities, equipment, and labor, and 
provides operation outcomes (see Figure 3). 

• Dashboard sub-model: this gives a visual display of 
KPIs under various forms: time plots, bar charts, 
etc. On the dashboard, each terminal sub-system 
has its own KPIs that are classified into four 
classes: (1) utilization: describes the utilization 
rate of handling equipment and resources; (2) 
service-time: shows distance traveled and working 
times of handling equipment, service times at 
gates, and dwell times of freights and 
transportation modes; (3) environment: concerns 
greenhouse gas emission and energy consumption; 
(4) cost: gives the handling cost per container or 
trailer at each sub-system. 

• User interface: where the end user tunes up system 
settings. 

There are two ways of communication between 
system entities: messages as direct communication 
and events as indirect communication. Indeed, with the 
first method the sender knows exactly who the 
receivers are, whereas the trigger ignores who is 
listening to the event. Both of them are classified into 
four classes, as can be seen in Table 1. 
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Table 1. Classification of messages and events 

 Classes Description 

Messages 

Request messages sent to ask the planner 
agent for a service or a resource. 

Reply responses from the planner agent 
to the agents making a request. 

Order 
orders sent by the planner agent 
containing operating plans to 
representative agents. 

Inform to send notifications, information 
or data. 

Events 

Triggering start running a process or an 
action. 

Unblocking unlock the execution of a process. 

Exception stop the execution of a process 
when a critical situation happens. 

Error stop the simulation when a strong 
constraint is broken. 

6. Step IV: Implementation 

This step is a proof-of-concept step which concerns 
firstly the coding, debugging, and running of the model 
using AnyLogic simulation software, and secondly, 
validation of the simulation model to prove its ability to 
reflect the expected behavior. The outcome of this step 
is a trustful simulation model that can be used as an 
accurate mirror of our studied system to evaluate its 
performance vis-à-vis given actions, thereupon 
getting valuable feedback. However, we should always 
keep in mind the well-known quote of George Box: “all 
models are wrong, but some are useful.” 

6.1. Coding and debugging   

The conceptual model was implemented part by part 
with the help of ready-to-use AnyLogic libraries. The 
tools of AnyLogic used in the implementation are: 
Agent Library to create system agents and their 
behaviors; Java classes and Interfaces as well as Space 
Markup Elements to set up terminal facilities (object 
sub-model) and Control and Model classes; Process 
Modeling Library, Rail Library, and Road Library to 
represent the model activities.  

To verify that the conceptual model was properly 
implemented, the debugging was conducted in three 
ways: log files, AnyLogic debugger, and a 3D animation 
window. The log files and AnyLogic debugger traced the 
execution of the model while running in order to detect 
any dysfunctions. A 3D animation window was used to 
check that the operations were correctly executed and 
agents behaved as expected. 

6.2. Validation  

As regards the validation sub-step, this can be done 
either by comparing the key values collected from the 
simulation model with those observed in the studied 
systems, or by the subject matter’s experts. Seen that 
Norvik seaport terminals (see Figure 1) are new 
platforms that have recently opened their doors, 
unfortunately, observed data are not available at the 

moment. However, for container terminals, there is a 
universal key indicator to check whether containers are 
handled in reasonable time or not, i.e., the average 
handling time per container. Actually, the average 
handling time per container is at most three minutes 
(Abourraja et al. 2018), which includes one minute for 
the pick-up, another one for the drop-off, in addition 
to the equipment moving time, which could reach one 
minute. In our model, this indicator was about 3 
minutes per container.  

The designed models had been examined by experts 
(terminal planners) to evaluate their validity and on-
the-spot visits were also arranged. Terminal planners 
illustrated how each activity is managed and executed. 
Then, several differences in our model vis-à-vis the 
reality were noticed: 

• The entry gates for trucks are different from the 
exit ones; in addition, lorries and trailers enter the 
terminal through different gates: in our model, we 
assumed that trucks enter and leave the terminal 
via the same gate. 

• Lorries and trailers are parked in different spaces: 
we assumed that both shared the same parking 
spaces. 

• There is no explicit synchronization between 
straddle carriers and reachstackers in the rail yard: 
in reality first the straddle carriers move import 
containers to rail buffers, afterward the 
reachstackers start handling on the trains, and 
when trains leave the terminal, the straddle 
carriers come again to move the export containers 
to the internal yard. In our first assumptions, all of 
these operations were done simultaneously. 

To be certain about the models, especially the 
operating and controlling sub-models, they had been 
discussed with terminal planners. Two main comments 
were made: 

• The parking processes of trailers and lorries should 
be separated: since trailers and lorries do not 
undergo the same processes (see Section 4.2), a 
parking process named “lining-up” for lorries was 
added. In fact, lorries are parked in lines whilst 
trailers in slots. 

• The human factor is missing: in our model drivers 
and equipment are considered as a single agent. 
The reason behind that was exposed as modeling 
human behaviors is not easy and time consuming, 
while using probabilities, like the majority of other 
research, was a better choice. 

The designed models and retained insights were 
adapted to these observations and comments. 

7. Discussion and conclusion  
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This paper provided a detailed approach for designing 
simulation models for Ro-Ro and container terminals. 
As with other existing approaches, it was staged into 
four steps with multiple sub-activities of modeling and 
refinement of the simplified representation in order to 
end with a consistent and relevant design for the 
studied systems. But nonetheless, it focused only on 
particular types of complex systems, which was not the 
case in the proposed approaches by Garro and Russo 
(2010) and Fortino and Russo (2012), etc. Moreover, our 
approach lacked time-saving tools or techniques that 
can help modelers in their duty, like generation of 
source code from conceptual models in the 
implementation step or the automatization of passage 
between steps; for example, the aggregation of local 
activity diagrams to form the global model of the 
system. The first point could be approximately 
managed through some modeling platforms such as 
StarUML, but they are mainly interested in generating 
source code for software and databases. Automatic code 
generation for simulation is addressed in Garro and 
Russo (2010) and Fortino and Russo (2012). The second 
point, known as model transformation, is discussed in 
Jouault et al. (2008). 

Despite these lacks, some advantages of the 
approach are worth noting. The adapted form of the 
ECB pattern, the MCB pattern for “Model-Controller-
Behavior,” helped in identifying and distinguishing 
agent behaviors as well as in agent implementation. 
The given guidelines and criteria for classification can 
lead to a good splitting of the complex systems into a 
set of smaller and manageable sub-models composed 
of homogenous entities and components. Most 
notably, as far as we know, the paper on hand is the first 
study that integrates Ro-Ro and container terminals in 
a single simulation model. 

The next step now is to investigate the performance 
of the Norvik port terminals and to perform a 
sensitivity analysis of the system parameters. 
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