

© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

1

20th International Conference on Modelling and Applied Simulation
18th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0037 ISBN 978-88-85741-61-4 © 2021 The Authors.
doi: 10.46354/i3m.2021.mas.001

A hybrid heuristic algorithm for solving the Traveling
Salesman Problem with Time Windows
Mattia Neroni1,*and Letizia Tebaldi2

1Department of Engineering and Architecture – University of Parma, Parco Area delle Scienze 181/A, 43124, Parma
(Italy)
*Corresponding author. Email address: mattia.neroni@unipr.it

Abstract
Several issues related to the logistics field can be recognized as applications of the renowned Traveling Salesman
Problem with Time Windows (TSPTW); examples of these issues include, among others, instance planning
deliveries, managing internal logistics, bank couriers, material handling, but also production scheduling. In the
light of such numerous applications, in this paper a hybrid algorithm based on the Divide-And-Conquer (DAC)
technique and the Biased Randomized heuristic Algorithm (BRA) for solving the mentioned problem is presented.
The aim is to propose a flexible solution suitable for implementation in many contexts where the TSPTW is
relevant, thus improving performance and key indicators. The quality and reliability of the tool are validated on
several benchmark problems through a comparison with a different algorithm already proposed in literature. In
the light of the simulations carried out, it turned out to be effective and efficient when dealing with problems
similar to those that characterize real applications, even in terms of computational time efficiency.

Keywords: Traveling Salesman Problem; Time Windows; Divide-And-Conquer; Biased Randomized Algorithm; Logistics;
Simulation.

1. Introduction
Logistics and transportation activities are strategic

elements for the firm success in gaining competitive
advantage (Penteado et al., 2016). The adoption of
well-designed logistic procedures may lead to great
benefits such as labor saving, costs reduction,
mitigation of the bullwhip effect, lead time reduction,
and decreased risk of stock out (Zhang and Lai, 2006).
Decision makers involved in logistics and
transportation have constantly to face several
challenges due to the globalization, the advent of e-
commerce, the continuous pressing for sustainable
models, and the increased complexity of supply chains.

For instance, within a warehouse, concerns could be
related to the picking process, which contributes up to
60-70% of the total warehouse costs (Kulak et al.,
2012), in terms of optimizing the route the picker (or
the robot nowadays) has to travel, or the best storage
allocation scenario allowing the order picking to be
improved (e.g. Öztürkoğlu, 2020); transports as well
constitute a key question, which very often results in
techniques allowing to determine the best journeys
able to minimize travel time and, consequently, costs
and emissions (e.g. Eshtehadi et al., 2020).

Many other issues related to the logistics field could
be addressed, and what they all have in common is their
ultimate aim of optimization.

2 | 20th International Conference on Modelling and Applied Simulation, MAS 2021

In most cases, the best solution is provided by the

operational research field (Dekker et al., 2012); indeed,
supporting decisions within the logistics context is one
of the most successful areas of simulation and
optimization tools (Juan et al., 2015).

One of the most debated problems in the context of
logistics is to determine the design of delivery routes
for vehicles through a set of geographically scattered
customers subject to side constraints. If we think that
in the last years over 70% of goods were transported by
road (Eurostat, 2020), the relevance of this issue
immediately follows. This aspect is well-known in
literature as Traveling Salesman Problem (TSP). The
simplest description of the TSP can be resumed as
follows: the salesman must visit a set of customers (or
sale points), and, given the travel cost sustained to
move from a customer to the other, he/she has to
determine the cheapest tour connecting them all,
visiting each customer only once, and returning to the
origin point (Cheng et al., 2008), namely the depot.
Clearly, the travel costs could also be interpreted as
travel times or distances, and, in this case, the objective
should be to make the journey as short as possible.

One of the variants of the TSP resulting from the
application of the problem in real contexts, is the
Traveling Salesman Problem with Time Windows
(TSPTW), whose complete mathematical formulation
is provided for instance by Ferreira da Silva and Urrutia
(2010). It mainly consists in a TSP where the customers
to be visited are subject to time constraints and must be
reached within a specific time span, namely the time
window.

Both these problems find application in many
contexts, not limited to transportation issues only.
Indeed, as Silva et al. (2020) state, algorithms used for
the TSP can be used as well for solving order picking
problems in manual warehouses by considering the
picker as an alter ego of the salesman, or currently the
drone delivery is spreading and the drone itself can be
seen as a vehicle; an application example of this kind is
provided by Briant et al., (2020). Moreover, it was
recently implemented for job scheduling issues (e.g.
Ahmadov and Helo, 2018), for time optimization
analysis (e.g. Selvi et al., 2019), for developing models
for lot-sizing problems under capital flow constraints
(e.g. Chen and Zhang, 2018) or even in systems for
intelligent water irrigation and fertigation (e.g.
Karunanithy and Velusamy, 2020), for data collection
(e.g. Qu et al., 2020) and many others. Hence, the
versatility of both TSP and TSPTW and their multiple
fields of applications make them significant and
relevant.

However, while for the TSP many interesting
solutions have been proposed over the years, the same
cannot be said for the TSPTW. Carrying out an easy
query on the Scopus database, and looking at the
number of publications concerning the TSP and the
TSPTW, the imbalance is clear. For the TSP there are
more than 12,000 publications, versus the only around

170 for the variant with time windows, which
nonetheless, surely deserves attention, as it was
demonstrated that the most critical constraint
companies have to face is exactly represented by the
time windows (Bychkov and Batsyn, 2018).

In an attempt to partially fill this gap, in this paper
the TSPTW is tackled through a hybrid solution which
relies on the well-known Divide-And-Conquer (DAC)
technique and the Biased Randomized Algorithm (BRA)
(Juan et al., 2010). To the best of the authors’
knowledge, there is no evidence in literature of a hybrid
version built on the basis of these two approaches,
despite many studies in different contexts prove that
both tools are very efficient and computationally fast.

The remainder of the paper is structured as follows.
Firstly, two brief digressions on the DAC and the BRA
are introduced, respectively in section 2 and 3. The
proposed algorithm is presented in section 4, and then,
to demonstrate the quality and the reliability of the new
solution, the results of several simulations are
presented in section 5, where the proposed approach is
compared with three others algorithms on different
benchmark problems. Finally, conclusions and future
perspectives are provided in section 6.

2. The Divided-And-Conquer Technique

The Divide-And-Conquer, also referred to as divide-
et-impera, is a well-known algorithm design paradigm.
It basically consists in recursively breaking down a
problem into two or more sub-problems, until these
become simple enough to be solved directly. The
solutions of the sub-problems are then combined
together to provide a unique solution to the original
version of the main problem. It is clear that this
approach refuses a priori the achievement of the global
optimum; however, it brings significant benefits of
paramount importance when approaching complicated
combinatorial optimization problems. Indeed, first of
all it is proved to be both very efficient and very
performant; secondly, it is naturally adapted to be used
on multi-processor machines, and tends to make an
efficient use of memory caches.

The DAC technique is the basis of efficient
algorithms for many problems, such as search
algorithms (e.g., binary search), sorting algorithms
(e.g., quicksort, merge sort), large numbers
multiplications with floating points round off control
(e.g., the Karatsuba algorithm), and many others. It is
widely discussed by the scientific community and
adopted in many engineering and mathematics
problems (see for instance interesting literature
reviews of its applications by Bontempi and Birattari,
2005; Mei et al., 2016; Yang et al., 2019).

According to its definition and formalization, the
TSPTW is well-suited for being recursively broken
down into smaller problems, and this is exactly what
the DAC technique does. Indeed, its application to the
traditional TSP is not new in literature: for instance,

5

Neroni and Tebaldi | 3

Meuth and Wunsch (2008) applied it to TSP for vehicle
routing obtaining good results, while Mulder and
Wunsch (2003), even if without getting satisfactory
results, solved a TSP with even 1 million nodes in a very
short computational time by aggregating them in small
subsets using a neural network (they were probably
inspired by a previous similar work by Foo and Szu,
1989). Nonetheless, to the authors’ best knowledge,
there are no studies that implement the DAC to the
TSPTW, especially in combination with a Biased
Randomized Algorithm.

3. The Biased Randomized Algorithm

The Biased Randomized Algorithm (BRA) belongs to
the plethora of randomized heuristics that, nowadays,
are widely used to solve large scale optimization
problems. It might be classified as a constructive
procedure, since the solution is iteratively built one
element at a time, although it is frequently
incorporated in a metaheuristic framework, such as an
iterated local search (see for instance Juan et al., 2014).
In line with the similar concept of the roulette wheel, in
the BRA each element is selected according to a certain
probability: the greater is the benefit obtained by
introducing an element at that point of the
construction, the greater is the probability to choose it.
The idea behind this concept is to introduce slight
modifications in the greedy constructive behavior, to
escape the local optima by exploring many solutions in
a very short computational time, while maintaining the
logic behind the heuristic.

The probability mentioned few lines above might be
calculated according to several different criteria, such
as ranking, priority rule, heuristic value, and many else.
The first BRAs were proposed by Arcus (1965) and
Tonge (1965), who named it Biased Random Sampling
(BRS) and used it to bias the selection of randomly
generated solutions. In the following years, many
priority rules-based heuristics have been designed,
although the first application of a BRA in a
metaheuristic framework came 24 years later, when
Glover (1989) proposed his Probabilistic Tabu Search
(PTS), successively extended in Glover (1990). Another
metaheuristic famous for integrating a BRA is the Ant
Colony Optimization (ACO), originally introduced by
Colorni et al. (1991). All the above-mentioned
implementations define the probability by using an
empirically constructed distribution; despite that,
using a theoretical distribution it is possible to obtain a
random element in a less time-consuming way by
using an analytical expression. In this way, Juan et al.
(2010) were pioneers in the implementation of a
skewed theoretical distribution in the BRA. The
candidate solutions are therefore sorted from the best
one to the worst one according to the desired criterion,
and then the probabilities are assigned to the
candidates depending on their position in the list.
According to the authors’ experience, the most
common theoretical distribution in BRA is the quasi-
geometric distribution described in equation (1). The

reason for its popularity is probably that it depends on
a single parameter 𝛼, which avoids time-consuming
fine-tuning processes for parameters’ setting (Juan et
al., 2015).

𝑓(𝑥) = 	 (1 − 𝛼)! (1)

Note that, for 𝛼 very close to 1 a greedy solution is
always returned, while for 𝛼 very close to 0 it
approximates a uniform distribution.

For further implementations and additional
deepening, the authors suggest Grasas et al. (2017),
who carried out a recent literature review on this
specific topic.

4. The proposed algorithm

4.1. Problem formulation

The TSPTW consists in the construction of a route to
visit a set of 𝑀 nodes, alias customers (𝑗 = 1, . . . , 𝑀) by
minimizing the travelling distance/cost/time, under
temporal constraints, i.e., the time windows. The
starting and the ending points always match with the
origin (e.g., in real applications the deposit, the entry
point, or the logistic HUB); indeed, the problem might
also be understood as the definition of a Hamiltonian
Cycle. The time constraint imposes that each node 𝑗,
origin included, must be visited within a specific
timeframe which goes from its opening time (i.e., 𝑠") to
its closing time (i.e., 𝑒"). The violation of these time
windows generally involves an additional cost or a
penalization. A solution might be formalized as an
array containing the 𝑀 nodes, sorted in the order in
which they are supposed to be visited. As already stated,
the first and the last element of the solution must
coincide with the origin.

In the proposed algorithm, the cost of a solution is
intended to be the total time needed to complete the
tour through all the nodes (i.e., cost-in-time), plus an
additional cost due to eventual delays. It follows that
the objective is to minimize this value. The cost of a
solution is provided in equation (2).

𝑐𝑜𝑠𝑡 = 	∑ (𝜏! +𝑚𝑎𝑥.0;	𝜏! + 𝑝! − 𝑒!4)"
!#$ (2)

where:

- 𝑝" is the processing or service time at
node/customer 𝑗;

- 𝑒" is the closing time of node 𝑗;

- 𝜏" is the time in which node 𝑗 is reached and, given
𝑑"#$," the distance-in-time between nodes 𝑗 − 1 and
𝑗 and 𝑠" the opening time of node 𝑗, it is calculated as
𝑚𝑎𝑥	{𝜏"#$ + 𝑝"#$ +	𝑑"#$,"; 	𝑠"}. This is true for 𝑗 ∈ [2,𝑀],
because of course 𝜏$ = 0;

- 𝑚𝑎𝑥{0; 𝜏" + 𝑝" − 𝑒"} is the penalty component, which
occurs in case of eventual delay.

Note that a delay can occur not only when a node is

4 | 20th International Conference on Modelling and Applied Simulation, MAS 2021

reached after its closing time, but also when it is
reached on time, but the service time 𝑝" forces it to
postpone the closure, thus determining a delay.

4.2. Main procedure

The main procedure of the proposed algorithm is
inspired by the classic DAC approach. The starting set
of 𝑀 nodes that constitute the main problem is
recursively split into smaller subsets, until the number
of nodes in each of them is below a certain threshold
(i.e., 𝛾). Then, each subset is solved using the
incorporated algorithm (in this case the BRA), and the
solutions are aggregated to constitute the final one.

The splitting process (Figure 1) is carried out as
follows. If the number of nodes in the considered set is
over the predefined threshold, a random node 𝑟 is
chosen according to a uniform probability distribution.
The considered set of nodes is therefore divided into
two subsets: (i) the first one is made of nodes that close
before the opening of 𝑟, (ii) the other is composed of the
remaining nodes.

In case after having selected the random node 𝑟 the
splitting is not possible, a new random node is selected.
This step is repeated again and again until a splitting is
obtained, or a maximum number of attempts is
reached. In the latter case, the set of nodes that was not
possible to divide, is optimized as-is using the BRA.

Figure 1. Representation of the problem decomposition.

4.3. The optimization of the subsets

The optimization of the subsets of nodes is made
using a metaheuristic framework that makes use of the
BRA. Before describing this procedure, two variables,
namely 𝛼 and 𝛽, should be introduced:

- 𝛼 ∈ (0,1) is the parameter of the quasi-
geometric distribution in equation (1),

- 𝛽 ∈ (0,1] is a variable that represents, in the
current iteration, how much of the solution is
destructed and reconstructed to create a new
solution for the subset.

The procedure for the optimization of the subsets
always starts with setting 𝛽 at a low starting value (e.g.,
0.1), and the current solution at the greedy one, in

which, given node 𝑗, the next node (i.e., 𝑗 + 1) is selected
as the node that minimizes the cost function in
equation (3).

𝑐𝑜𝑠𝑡!,!&' = 𝑚𝑎𝑥	{𝜏𝑗 + 𝑝𝑗 +	𝑑𝑗,𝑗+1; 	𝑠𝑗+1} + 𝑚𝑎𝑥	{0; 	𝜏𝑗+1 + 𝑝𝑗+1 − 𝑒𝑗+1}. (3)

Then, at each iteration of the algorithm until the
stopping criteria are met, given 𝑚 the length of the
current solution for the subset, the last 𝑚 ∙ 𝛽 nodes are
removed and reinserted to create a new possible
solution (Figure 2). If the new solution is better than
the current one, this latter is replaced and 𝛽 is reset at
the low starting value, otherwise 𝛽 is increased in order
to destruct and reconstruct a greater part of the current
solution during the next iteration.

Figure 2. Representation of destruction and reconstruction process

used to create new solutions.

The reconstruction of the current solution (or part of
it) is made using the BRA. The nodes to append to the
solution are sorted from the best one to the worst one
according to equation (3) (where 𝑗 in this case is the last
node of the solution under construction). Each of them
is assigned a probability of being included, that
depends on its position in list determined using
equation (1) (Figure 3); the node to include is therefore
randomly selected. The process is repeated until the
new solution is complete.

Figure 3. Representation of the selection of each node included in

the solution.

5. Validation and results

The algorithm was implemented in Go©
programming language and tested on a standard
personal computer Intel Quad Core i7 CPU at 3.6GHz
with 8Gb RAM and Ubuntu 18.04© operative system.
Being Go garbage collected, the program does not
execute as fast as those written in C or C++;

Neroni and Tebaldi | 5

nonetheless, it turns out to be reasonably fast for a real
implementation, as also demonstrated by the
computational times observed. The code is also
available open-source at the following link:
https://github.com/mattianeroni/Divide-Et-Impera.

In order to provide a robust validation, the algorithm
was compared to that proposed by Ferreira da Silva and
Urrutia (2010), which, compared to the plethora of
existing algorithms for solving the TSPTW, is relatively
new, and, according to the Scopus database is one of the
most cited documents. Moreover, the authors of this
algorithm have taken into account very complicated
and big sized problem, and, as proven in their paper,
they already outperform two old but very important
algorithms, such as the generalized heuristic by
Gendreau et al. (1998), and the simulated annealing
with variable penalty described in Ohlmann and
Thomas (2007).

Before carrying out a comparison, a parameters
tuning is needed. In this respect, the proposed
algorithm offers an additional advantage. As matter of
fact, it has very few parameters to optimize, and, as
shown by the parameters tuning below, it is quite
insensitive to them. The parameter of the quasi-
geometric distribution 𝛼 has been set equal to 0.9
according to the suggestions found in literature
(Grasas et al. 2017). The only two remaining parameters
are (i) the predefined length of the subsets (i.e., 𝛾), and
(ii) the number of iterations for the BRA. Four possible
combinations of these parameters have been tested on
three problems of different complexity, chosen from
the benchmarks successively used for testing. The
selected values for 𝛾 are respectively 30 and 50, while
the tested number of iterations for the BRA are 1500
and 3000. We are aware that the greater is the number
of iterations the higher is the possibility to have a better
solution; however, at first, we believe a trade-off
between performance quality of the solution is due,
secondly, this is true only into the single subsets of
node and not for the final complete solution.

The results of the parameters tuning are presented
below, in Table 1. Being the proposed algorithm subject
to stochasticity, it has been iterated 10 times for each
combination parameters-benchmark, and in the table
are presented the average results and the standard
deviations.

Table 1. Results of the parameters’ tuning.

Benchmark 𝜸 Iterations of
BRA

Avg.
Cost

St.Dev.
Cost

Avg. Comp.
time [s]

St.Dev. Comp.
time [s]

n200w100_00
1

30 3000 10248 61 0.921 0.098
30 1500 10248 61 0.401 0.036

50 3000 10213 0 1.183 0.067
50 1500 10213 0 0.566 0.057

n400w500_00
5

30 3000 22114 0 2.223 0.194
30 1500 22193 69 1.155 1.495
50 3000 22154 69 2.659 0.323

50 1500 22193 69 2.400 0.136

n350w200_00
5

30 3000 18268 0 1.571 0.080
30 1500 18216 0 1.127 1.600

50 3000 18320 90 2.090 0.064
50 1500 18268 90 1.750 0.048

Results of parameters tuning show that there is no
significant correlation between the parameters’ value
and the results of the algorithm. As expected, iterating
more times the BRA, the computational time is slightly
longer and the average cost is slightly lower; however,
we do not consider both differences as relevant for
preferring a setting instead of another. To carry out the
tests, we opted for 𝛾=30, and iterations=3000. We are
aware that these parameters should be tuned again
when the algorithm is implemented on problems of
different average complexity, but we are confident
their impact on results is not crucial.

The results of testing and simulations are presented
in Appendix A at the end of the manuscript (Table 2),
where the proposed algorithm is compared in terms of
cost of the best solution and computational times with
results from the algorithm proposed by Ferreira da
Silva and Urrutia (2010). Again, since our algorithm is
subject to stochasticity, it has been iterated 10 times on
each benchmark, and the results presented in Table 2
refer to the average result and the standard deviation
calculated on these 10 iterations.

For the implementation of the algorithm proposed
by Ferreira da Silva and Urrutia, we used the C++
implementation open-sourced by the authors at the
following link:
https://homepages.dcc.ufmg.br/~rfsilva/tsptw/#insta
nces.

The benchmark values have been taken from the
same repository, and their nomenclature can be
interpreted as follows. Given the name of a benchmark
problem (say for instance n200w100_001, the first
benchmark of Table 2), the number after the ‘n’
represents the number of nodes, the number after ‘w’
represents the size of the time windows, and the last
three numbers are a unique ID to distinguish that
problem from others problems with the same
characteristics.

As presented in Appendix A, the proposed algorithm
is always able to outperform the one proposed by
Ferreira da Silva and Urrutia. On average the proposed
solutions are 0.85% better, and the algorithm is
extremely reliable, since the coefficient of variation
(𝜎/𝜇) calculated on the presented results is always less
than 1%. The computational time is surprising. The
proposed algorithm is 100÷1000 times faster, even if
the comparison algorithm was implemented in C++. A
comparison of the number of solutions explored would
allow us to go deeper into this difference, although we
have not been able to do it because our algorithm is
iterating more times on subsets of nodes only. A gross
estimate made on the basis of the average number of
subsets in which each problem is split says that our
algorithm explores less solutions, and this might be the
reason for the shorter computational time.

6 | 20th International Conference on Modelling and Applied Simulation, MAS 2021

6. Conclusions
This paper aimed at presenting a hybrid algorithm

developed on the bases of the Divide-and-Conquer
approach and the Biased Randomized Algorithm for
solving the Traveling Salesman Problem with Time
Windows, a common problem implemented to solve
logistics issues. The solution has been designed for
planning transportation activities; although, it can be
implemented in several other contexts where the
TSPTW can find application. The proposed algorithm
has been compared to another algorithm proposed by
the scientific community, and it turned out to be very
efficient (seeking a better solution in all the analyzed
benchmarks) and obtaining it in surprising short
computational times.

It presents of course some limitations and it lacks
realism in the assumption of cost-in-time. We
therefore aim to better explore these criticalities in
occasion of future works. More in detail, the possible
future research perspectives may concern: (i) the
testing and implementation of the same algorithm in
some real contexts of application of the TSPTW such as
transportation or production scheduling, essential step
to refine the algorithm since it would let emerge
practical issues and concerns which can be observed
only after real implementations; (ii) the consideration
of customer-dependent delay penalties, in a scenario
where there are some trusted and prominent
customers, and a delay in delivery to these customers
would have a greater impact; (iii) the combination of
the proposed algorithm with the well-known Clarke-
Wright savings algorithm, in order to apply it to a
Vehicle Routing Problem with Time Windows (El-
Sherbeny, 2010).

Moreover, once the algorithm will be adapted to deal
with more vehicles, a real case study of a company
operating within the field of express deliveries is
intended to be carried out: firstly, historical data as far
as the travel time of their journeys will be recorded;
then, the algorithm will be operatively implemented
for a sufficient time in order to assess whether this
solution could lead to tangible benefits and savings

References

Ahmadov, Y. and Helo, P. (2018). A cloud based job
sequencing with sequence-dependent setup for
sheet metal manufacturing. Ann. Oper. Res., 270:5-
24.

Arcus, A. L. (1965). A computer method of sequencing
operations for assembly lines. Int. J. Prod. Res.,
4:259-277.

Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N.,
Ladier, A.-L. and Ogier, M. (2020). An efficient and
general approach for the joint order batching and
picker routing problem. Eur. J. Oper. Res., 285:497-
512.

Bontempi, G., & Birattari, M. (2005). From linearization
to lazy learning: A survey of divide-and-conquer
techniques for nonlinear control. International
Journal of Computational Cognition, 3(1).

Bychkov, I. and Batsyn, M. (2018). A Hybrid Approach
for the Capacitated Vehicle Routing Problem with
Time Windows. Proceedings of the School-Seminar on
Optimization Problems and their Applications (OPTA-
SCL 2018).

Chen, Z. and Zhang, R. (2018). A capital flow-
constrained lot-sizing problem with trade credit.
Sci. Iran., 25:2775-2787.

Cheng, W., Maimai, Z. and Jian, L. (2008). Solving
traveling salesman problems with time windows by
genetic particle swarm optimization. 2008 IEEE
Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence),1752-1755.

Colorni, A., Dorigo, M., and Maniezzo, V. (1991).
Distributed optimization by ant colonies. In
Proceedings of the first European conference on
artificial life, 142:134-142.

Dekker, R., Bloemhof, J. and Mallidis, I. (2012).
Operations Research for green logistics – An
overview of aspects, issues, contributions and
challenges. Eur. J. Oper. Res.,, 219:671-679.

El-Sherbeny. (2010). Vehicle routing with time
windows: An overview of exact, heuristic and
metaheuristic methods. J. King Saud Univ. Sci.,
22:123-131.

Eshtehadi, R., Demir, E. and Huang, Y. (2020). Solving
the vehicle routing problem with multi-
compartment vehicles for city logistics. Comput.
Oper. Res., 115, A.N. 104859.

Eurostat, (2020). Statistics Explained, Freight
Transportation Statistics – modal split.
https://ec.europa.eu/eurostat/statistics-
explained/pdfscache/1142.pdf [Accessed January
2021].

Ferreira da Silva, R. and Urrutia, S. (2010). A General
VNS heuristic for the traveling salesman problem
with time windows. Discrete Optim., 7:203-211.

Foo, Y. S., & Szu, H. (1989). ‘Solving large-scale
optimization problems by divide-and-conquer
neural networks’. IEEE International Joint
Conference on Neural Networks, Vol. 1, pp. 507-511.

Gendreau, M., Hertz, A., Laporte, G. and Stan, M.
(1998). A generalized insertion heuristic for the
traveling salesman problem with time windows.
Oper. Res., 46:330-335.

Glover, F. (1989). Tabu search—part I. ORSA J. Comput.,
1:190-206.

Glover, F. (1990). Tabu search—part II. ORSA J. Comput.,
2:4-32.

Grasas, A., Juan, A. A., Faulin, J., de Armas, J. and

Neroni and Tebaldi | 7

Ramalhinho, H. (2017). Biased randomization of
heuristics using skewed probability distributions: a
survey and some applications. Comput. Ind. Eng.,
110:216-228.

Juan, A. A., Faulin, J., Ruiz, R., Barrios, B. and Caballé, S.
(2010). The SR-GCWS hybrid algorithm for solving
the capacitated vehicle routing problem. Appl. Soft
Comput., 10: 215-224.

Juan, A. A., Lourenço, H. R., Mateo, M., Luo, R., &
Castella, Q. (2014). Using iterated local search for
solving the flow-shop problem: parallelization,
parametrization, and randomization issues.
International Transactions in Operational Research,
21(1), 103-126.

Juan, A. A., Pascual, I., Guimarans, D. and Barrios, B.
(2015). Combining biased randomization with
iterated local search for solving the multi-depot
vehicle routing problem. Int. T. Oper. Res., 22:647-
667.

Karunanithy, K. and Velusamy, B. (2020). Energy
efficient cluster and travelling salesman problem
based data collection using WSNs for Intelligent
water irrigation and fertigation. Measurement:
Journal of the International Measurement
Confederation, 161:107835.

Kulak, O., Sahin, Y. and Egement Taner, M. (2012). Joint
order batching and picker routing in single and
multiple-cross-aisle warehouses using cluster-
based tabu search algorithms. Flex. Serv. Manuf. J.,
24:52-80.

Mei, Y., Omidvar, M. N., Li, X., & Yao, X. (2016). A
competitive divide-and-conquer algorithm for
unconstrained large-scale black-box optimization.
ACM Transactions on Mathematical Software
(TOMS), 42(2), 1-24.

Meuth, R. J., & Wunsch, D. C. (2008). Divide and conquer
evolutionary TSP solution for vehicle path planning,
IEEE Congress on Evolutionary Computation, pp.
676-681.

Mulder, S. A., & Wunsch D. C. (2003). Million city
traveling salesman problem solution by divide and
conquer clustering with adaptive resonance neural
networks. Neural Networks, 16(5-6): 827-832.

Ohlmann, J.W. and Thomas, B.W. (2007). A
compressed-annealing heuristic for the traveling
salesman problem with time windows. INFORMS J.
Comput., 19(1).

Öztürkoğlu, Ö. (2020). A bi-objective mathematical
model for product allocation in block stacking
warehouses. Int. T. Oper. Res., 27:2184-2210.

Penteado M., M. and Chicarelli A., R. (2016). Logistics
activities in supply chain business process. Int. J.
Logist. Manag., 27:6-30.

Qu, F., Liu, J., Ma, Y., Zang, D. and Fu, M. (2020). A novel
wind turbine data imputation method with multiple

optimizations based on GANs. Mech. Syst. Signal Pr.,
139:106610.

Selvi, L., Joelianto, E. and Leksono, E. (2019). Time
Optimization Analysis Using Hybrid Simulated
Annealing and Genetics Algorithm for CNC
Punching Machine. 2nd International Conference on
Mechanical, Electronics, Computer, and Industrial
Technology, MECnIT 2018, 1230.

Silva, A., Coelho, L.C., Darvish, M. and Renaud, J.
(2020). Integrating storage location and order
picking problems in warehouse planning. Transp.
Res. Part E, 140:102003.

Tonge, F. M. (1965). Assembly line balancing using
probabilistic combinations of heuristics. Manag.
Sci., 11:727-735.

Yang, P., Tang, K., & Yao, X. (2019). A parallel divide-
and-conquer-based evolutionary algorithm for
large-scale optimization. IEEE Access, 7, 163105-
163118.

Zhang, G. Q. and Lai, K. K. (2006). Combining path
relinking and genetic algorithms for the multiple-
level warehouse layout problem. Eur. J. Oper. Res.,
169:413-425.

8 | 20th International Conference on Modelling and Applied Simulation, MAS 2021

Appendix A
Table 2. Results of the numerical validation.

Benchmark

Ferreira Da Silva
and Urrutia (2010) Proposed algorithm

Benchmark

Ferreira Da Silva
and Urrutia (2010) Proposed algorithm

Cost Comp. time
[s]

Avg.
Cost

St.Dev.
Cost

Avg. Comp.
time [s]

St.Dev. Comp.
time [s] Cost Comp. time

[s]
Avg.
Cost

St.Dev.
Cost

Avg. Comp.
time [s]

St.Dev. Comp.
time [s]

n200w100_001 10402 5.515 10213 0 0.566 0.057 n350w100_005 19238 46.337 19121 26 1.679 0.190

n200w100_002 10707 4.497 10580 28 1.049 0.111 n350w200_001 18199 49.523 18059 4 1.645 0.254

n200w100_003 10313 4.850 10239 1 1.025 0.100 n350w200_002 19190 45.863 18987 0 1.711 0.177

n200w100_004 10562 5.015 10513 0 1.124 0.413 n350w200_003 17594 49.235 17466 8 1.568 0.188

n200w100_005 10972 5.082 10904 20 0.909 0.232 n350w200_004 18539 47.076 18352 28 1.945 0.548

n200w200_001 10906 6.021 10863 0 1.174 0.515 n350w200_005 18421 50.149 18372 0 1.571 0.080

n200w200_002 11221 5.932 11117 4 0.981 0.038 n350w300_001 18603 53.818 18517 0 4.188 3.933

n200w200_003 10474 5.899 10339 21 0.904 0.080 n350w300_002 18453 56.712 18321 42 1.964 0.672

n200w200_004 10513 6.095 10464 0 2.133 1.937 n350w300_003 18386 54.103 18215 23 1.672 0.131

n200w200_005 10490 6.271 10311 0 0.931 0.187 n350w300_004 18071 57.652 17881 31 2.537 1.912

n200w300_001 10240 7.462 10065 8 0.853 0.095 n350w300_005 18489 57.806 18359 23 1.574 0.085

n200w300_002 10482 7.281 10397 50 0.882 0.040 n350w400_001 17551 62.707 17439 0 1.577 0.116

n200w300_003 10946 7.236 10764 40 0.831 0.127 n350w400_002 18318 57.423 18074 14 1.585 0.269

n200w300_004 10671 7.190 10529 14 0.838 0.032 n350w400_003 18302 59.344 18062 13 1.491 0.409

n200w300_005 10420 7.328 10369 0 0.783 0.078 n350w400_004 19420 62.279 19361 31 1.598 0.222

n200w400_001 10524 8.643 10454 67 0.981 0.208 n350w400_005 18249 56.102 18126 16 1.607 0.097

n200w400_002 10250 8.307 10078 48 1.157 0.393 n350w500_001 18918 58.864 18779 0 1.656 0.224

n200w400_003 10909 9.325 10870 0 1.872 1.093 n350w500_002 18499 58.356 18417 8 1.656 0.276

n200w400_004 10242 8.672 10106 31 2.403 2.690 n350w500_003 18789 59.703 18612 74 1.681 0.216

n200w400_005 10546 9.290 10472 44 1.026 0.433 n350w500_004 19635 59.197 19546 43 2.458 1.147

n200w500_001 10901 9.678 10768 80 0.795 0.076 n350w500_005 19379 57.516 19230 84 1.802 0.409

n200w500_002 10260 10.334 10148 20 1.054 0.203 n400w100_001 20089 57.246 20002 27 2.351 0.923

n200w500_003 10499 9.458 10442 17 0.933 0.192 n400w100_002 21056 56.473 20845 0 1.751 0.315

n200w500_004 10080 9.985 10074 0 1.024 0.174 n400w100_003 21334 57.498 21284 0 1.613 0.093

n200w500_005 10476 10.542 10320 154 1.045 0.409 n400w100_004 20975 56.028 20823 54 1.749 0.136

n250w200_001 12876 11.936 12717 47 2.284 0.724 n400w100_005 20395 55.923 20214 0 1.827 0.234

n250w200_002 13098 12.572 12928 33 1.405 0.414 n400w200_001 21260 70.165 21132 22 1.817 0.064

n250w200_003 13663 11.639 13520 2 1.458 0.590 n400w200_002 21604 62.211 21472 7 1.720 0.068

n250w200_004 12976 11.112 12868 99 0.954 0.146 n400w200_003 20769 69.053 20624 0 1.766 0.287

n250w200_005 12749 11.438 12633 0 1.537 0.409 n400w200_004 22169 68.588 22041 13 1.848 0.168

n250w300_001 13965 13.866 13874 0 1.179 0.110 n400w200_005 21815 66.221 21652 58 1.906 0.166

n250w300_002 13056 14.561 13008 0 2.567 2.159 n400w300_001 21779 80.853 21530 18 1.805 0.093

n250w300_003 13884 15.080 13743 93 1.041 0.069 n400w300_002 20102 79.865 20022 72 1.807 0.174

n250w300_004 13682 15.219 13542 2 1.698 0.685 n400w300_003 21367 102.188 21259 64 1.897 0.116

n250w300_005 13190 13.440 13029 68 1.498 0.564 n400w300_004 22926 100.945 22859 0 2.402 0.795

n250w400_001 13778 18.919 13702 58 1.209 0.332 n400w300_005 20655 90.303 20546 0 2.371 0.219

n250w400_002 13208 17.662 13038 15 2.314 1.142 n400w400_001 21125 96.707 21024 73 1.735 0.172

n250w400_003 13395 19.354 13251 62 1.340 0.030 n400w400_002 20857 92.308 20704 68 2.066 0.008

n250w400_004 13225 17.955 12998 0 1.365 0.261 n400w400_003 21579 101.614 21436 59 1.725 0.264

n250w400_005 12712 19.459 12579 0 1.860 1.066 n400w400_004 20198 105.519 20018 58 1.961 0.196

n250w500_001 13098 20.128 13034 0 1.432 0.612 n400w400_005 21654 89.905 21540 31 1.873 0.059

n250w500_002 13686 20.600 13571 13 1.047 0.123 n400w500_001 20073 109.416 19930 29 2.531 0.965

n250w500_003 12833 22.249 12650 89 1.319 0.216 n400w500_002 20965 104.076 20844 17 2.736 0.772

n250w500_004 12604 21.261 12544 18 1.347 0.249 n400w500_003 21551 109.525 21443 0 2.107 0.196

n250w500_005 14064 21.128 13841 54 3.455 2.905 n400w500_004 20506 117.584 20296 13 2.165 0.528

n350w100_003 18726 46.062 18655 18 1.686 0.374 n400w500_005 22329 102.001 22114 0 2.223 0.194

n350w100_004 18307 40.320 18204 42 1.520 0.196

