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Abstract 
Several issues related to the logistics field can be recognized as applications of the renowned Traveling Salesman 
Problem with Time Windows (TSPTW); examples of these issues include, among others, instance planning 
deliveries, managing internal logistics, bank couriers, material handling, but also production scheduling. In the 
light of such numerous applications, in this paper a hybrid algorithm based on the Divide-And-Conquer (DAC) 
technique and the Biased Randomized heuristic Algorithm (BRA) for solving the mentioned problem is presented. 
The aim is to propose a flexible solution suitable for implementation in many contexts where the TSPTW is 
relevant, thus improving performance and key indicators. The quality and reliability of the tool are validated on 
several benchmark problems through a comparison with a different algorithm already proposed in literature. In 
the light of the simulations carried out, it turned out to be effective and efficient when dealing with problems 
similar to those that characterize real applications, even in terms of computational time efficiency. 

Keywords: Traveling Salesman Problem; Time Windows; Divide-And-Conquer; Biased Randomized Algorithm; Logistics; 
Simulation. 
 
 

1. Introduction 
Logistics and transportation activities are strategic 

elements for the firm success in gaining competitive 
advantage (Penteado et al., 2016). The adoption of 
well-designed logistic procedures may lead to great 
benefits such as labor saving, costs reduction, 
mitigation of the bullwhip effect, lead time reduction, 
and decreased risk of stock out (Zhang and Lai, 2006). 
Decision makers involved in logistics and 
transportation have constantly to face several 
challenges due to the globalization, the advent of e-
commerce, the continuous pressing for sustainable 
models, and the increased complexity of supply chains.  

For instance, within a warehouse, concerns could be 
related to the picking process, which contributes up to 
60-70% of the total warehouse costs (Kulak et al., 
2012), in terms of optimizing the route the picker (or 
the robot nowadays) has to travel, or the best storage 
allocation scenario allowing the order picking to be 
improved (e.g. Öztürkoğlu, 2020); transports as well 
constitute a key question, which very often results in 
techniques allowing to determine the best journeys 
able to minimize travel time and, consequently, costs 
and emissions (e.g. Eshtehadi et al., 2020).  

Many other issues related to the logistics field could 
be addressed, and what they all have in common is their 
ultimate aim of optimization. 
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In most cases, the best solution is provided by the 

operational research field (Dekker et al., 2012); indeed, 
supporting decisions within the logistics context is one 
of the most successful areas of simulation and 
optimization tools (Juan et al., 2015).  

One of the most debated problems in the context of 
logistics is to determine the design of delivery routes 
for vehicles through a set of geographically scattered 
customers subject to side constraints. If we think that 
in the last years over 70% of goods were transported by 
road (Eurostat, 2020), the relevance of this issue 
immediately follows. This aspect is well-known in 
literature as Traveling Salesman Problem (TSP). The 
simplest description of the TSP can be resumed as 
follows: the salesman must visit a set of customers (or 
sale points), and, given the travel cost sustained to 
move from a customer to the other, he/she has to 
determine the cheapest tour connecting them all, 
visiting each customer only once, and returning to the 
origin point (Cheng et al., 2008), namely the depot. 
Clearly, the travel costs could also be interpreted as 
travel times or distances, and, in this case, the objective 
should be to make the journey as short as possible.  

One of the variants of the TSP resulting from the 
application of the problem in real contexts, is the 
Traveling Salesman Problem with Time Windows 
(TSPTW), whose complete mathematical formulation 
is provided for instance by Ferreira da Silva and Urrutia 
(2010). It mainly consists in a TSP where the customers 
to be visited are subject to time constraints and must be 
reached within a specific time span, namely the time 
window. 

Both these problems find application in many 
contexts, not limited to transportation issues only. 
Indeed, as Silva et al. (2020) state, algorithms used for 
the TSP can be used as well for solving order picking 
problems in manual warehouses by considering the 
picker as an alter ego of the salesman, or currently the 
drone delivery is spreading and the drone itself can be 
seen as a vehicle; an application example of this kind is 
provided by Briant et al., (2020). Moreover, it was 
recently implemented for job scheduling issues (e.g. 
Ahmadov and Helo, 2018), for time optimization 
analysis (e.g. Selvi et al., 2019), for developing models 
for lot-sizing problems under capital flow constraints 
(e.g. Chen and Zhang, 2018) or even in systems for 
intelligent water irrigation and fertigation (e.g. 
Karunanithy and Velusamy, 2020), for data collection 
(e.g. Qu et al., 2020) and many others. Hence, the 
versatility of both TSP and TSPTW and their multiple 
fields of applications make them significant and 
relevant. 

However, while for the TSP many interesting 
solutions have been proposed over the years, the same 
cannot be said for the TSPTW. Carrying out an easy 
query on the Scopus database, and looking at the 
number of publications concerning the TSP and the 
TSPTW, the imbalance is clear. For the TSP there are 
more than 12,000 publications, versus the only around 

170 for the variant with time windows, which 
nonetheless, surely deserves attention, as it was 
demonstrated that the most critical constraint 
companies have to face is exactly represented by the 
time windows (Bychkov and Batsyn, 2018). 

In an attempt to partially fill this gap, in this paper 
the TSPTW is tackled through a hybrid solution which 
relies on the well-known Divide-And-Conquer (DAC) 
technique and the Biased Randomized Algorithm (BRA) 
(Juan et al., 2010). To the best of the authors’ 
knowledge, there is no evidence in literature of a hybrid 
version built on the basis of these two approaches, 
despite many studies in different contexts prove that 
both tools are very efficient and computationally fast.  

The remainder of the paper is structured as follows. 
Firstly, two brief digressions on the DAC and the BRA 
are introduced, respectively in section 2 and 3. The 
proposed algorithm is presented in section 4, and then, 
to demonstrate the quality and the reliability of the new 
solution, the results of several simulations are 
presented in section 5, where the proposed approach is 
compared with three others algorithms on different 
benchmark problems. Finally, conclusions and future 
perspectives are provided in section 6. 

2. The Divided-And-Conquer Technique  

The Divide-And-Conquer, also referred to as divide-
et-impera, is a well-known algorithm design paradigm. 
It basically consists in recursively breaking down a 
problem into two or more sub-problems, until these 
become simple enough to be solved directly. The 
solutions of the sub-problems are then combined 
together to provide a unique solution to the original 
version of the main problem. It is clear that this 
approach refuses a priori the achievement of the global 
optimum; however, it brings significant benefits of 
paramount importance when approaching complicated 
combinatorial optimization problems. Indeed, first of 
all it is proved to be both very efficient and very 
performant; secondly, it is naturally adapted to be used 
on multi-processor machines, and tends to make an 
efficient use of memory caches. 

The DAC technique is the basis of efficient 
algorithms for many problems, such as search 
algorithms (e.g., binary search), sorting algorithms 
(e.g., quicksort, merge sort), large numbers 
multiplications with floating points round off control 
(e.g., the Karatsuba algorithm), and many others. It is 
widely discussed by the scientific community and 
adopted in many engineering and mathematics 
problems (see for instance interesting literature 
reviews of its applications by Bontempi and Birattari, 
2005; Mei et al., 2016; Yang et al., 2019). 

According to its definition and formalization, the 
TSPTW is well-suited for being recursively broken 
down into smaller problems, and this is exactly what 
the DAC technique does. Indeed, its application to the 
traditional TSP is not new in literature: for instance, 
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Meuth and Wunsch (2008) applied it to TSP for vehicle 
routing obtaining good results, while Mulder and 
Wunsch (2003), even if without getting satisfactory 
results, solved a TSP with even 1 million nodes in a very 
short computational time by aggregating them in small 
subsets using a neural network (they were probably 
inspired by a previous similar work by Foo and Szu, 
1989). Nonetheless, to the authors’ best knowledge, 
there are no studies that implement the DAC to the 
TSPTW, especially in combination with a Biased 
Randomized Algorithm. 

3. The Biased Randomized Algorithm 

The Biased Randomized Algorithm (BRA) belongs to 
the plethora of randomized heuristics that, nowadays, 
are widely used to solve large scale optimization 
problems. It might be classified as a constructive 
procedure, since the solution is iteratively built one 
element at a time, although it is frequently 
incorporated in a metaheuristic framework, such as an 
iterated local search (see for instance Juan et al., 2014). 
In line with the similar concept of the roulette wheel, in 
the BRA each element is selected according to a certain 
probability: the greater is the benefit obtained by 
introducing an element at that point of the 
construction, the greater is the probability to choose it. 
The idea behind this concept is to introduce slight 
modifications in the greedy constructive behavior, to 
escape the local optima by exploring many solutions in 
a very short computational time, while maintaining the 
logic behind the heuristic. 

The probability mentioned few lines above might be 
calculated according to several different criteria, such 
as ranking, priority rule, heuristic value, and many else. 
The first BRAs were proposed by Arcus (1965) and 
Tonge (1965), who named it Biased Random Sampling 
(BRS) and used it to bias the selection of randomly 
generated solutions. In the following years, many 
priority rules-based heuristics have been designed, 
although the first application of a BRA in a 
metaheuristic framework came 24 years later, when 
Glover (1989) proposed his Probabilistic Tabu Search 
(PTS), successively extended in Glover (1990). Another 
metaheuristic famous for integrating a BRA is the Ant 
Colony Optimization (ACO), originally introduced by 
Colorni et al. (1991). All the above-mentioned 
implementations define the probability by using an 
empirically constructed distribution; despite that, 
using a theoretical distribution it is possible to obtain a 
random element in a less time-consuming way by 
using an analytical expression. In this way, Juan et al. 
(2010) were pioneers in the implementation of a 
skewed theoretical distribution in the BRA. The 
candidate solutions are therefore sorted from the best 
one to the worst one according to the desired criterion, 
and then the probabilities are assigned to the 
candidates depending on their position in the list. 
According to the authors’ experience, the most 
common theoretical distribution in BRA is the quasi-
geometric distribution described in equation (1). The 

reason for its popularity is probably that it depends on 
a single parameter 𝛼, which avoids time-consuming 
fine-tuning processes for parameters’ setting (Juan et 
al., 2015).  

𝑓(𝑥) = 	 (1 − 𝛼)!    (1) 

Note that, for 𝛼 very close to 1 a greedy solution is 
always returned, while for 𝛼 very close to 0 it 
approximates a uniform distribution. 

For further implementations and additional 
deepening, the authors suggest Grasas et al. (2017), 
who carried out a recent literature review on this 
specific topic. 

4. The proposed algorithm  

4.1. Problem formulation  

The TSPTW consists in the construction of a route to 
visit a set of 𝑀 nodes, alias customers (𝑗 = 1, . . . , 𝑀) by 
minimizing the travelling distance/cost/time, under 
temporal constraints, i.e., the time windows. The 
starting and the ending points always match with the 
origin (e.g., in real applications the deposit, the entry 
point, or the logistic HUB); indeed, the problem might 
also be understood as the definition of a Hamiltonian 
Cycle. The time constraint imposes that each node 𝑗, 
origin included, must be visited within a specific 
timeframe which goes from its opening time (i.e., 𝑠") to 
its closing time (i.e., 𝑒"). The violation of these time 
windows generally involves an additional cost or a 
penalization. A solution might be formalized as an 
array containing the 𝑀 nodes, sorted in the order in 
which they are supposed to be visited. As already stated, 
the first and the last element of the solution must 
coincide with the origin.  

In the proposed algorithm, the cost of a solution is 
intended to be the total time needed to complete the 
tour through all the nodes (i.e., cost-in-time), plus an 
additional cost due to eventual delays. It follows that 
the objective is to minimize this value. The cost of a 
solution is provided in equation (2).  

𝑐𝑜𝑠𝑡 = 	∑ (𝜏! +𝑚𝑎𝑥.0;	𝜏! + 𝑝! − 𝑒!4)"
!#$    (2) 

where: 

- 𝑝"  is the processing or service time at 
node/customer 𝑗; 

- 𝑒" is the closing time of node 𝑗; 

- 𝜏" is the time in which node 𝑗 is reached and, given 
𝑑"#$," the distance-in-time between nodes 𝑗 − 1 and 
𝑗 and 𝑠" the opening time of node 𝑗, it is calculated as 
𝑚𝑎𝑥	{𝜏"#$ + 𝑝"#$ +	𝑑"#$,"; 	𝑠"}. This is true for 𝑗 ∈ [2,𝑀], 
because of course 𝜏$ = 0; 

- 𝑚𝑎𝑥{0; 𝜏" + 𝑝" − 𝑒"} is the penalty component, which 
occurs in case of eventual delay.  

Note that a delay can occur not only when a node is 
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reached after its closing time, but also when it is 
reached on time, but the service time 𝑝" forces it to 
postpone the closure, thus determining a delay.  

4.2. Main procedure 

The main procedure of the proposed algorithm is 
inspired by the classic DAC approach. The starting set 
of 𝑀 nodes that constitute the main problem is 
recursively split into smaller subsets, until the number 
of nodes in each of them is below a certain threshold 
(i.e., 𝛾). Then, each subset is solved using the 
incorporated algorithm (in this case the BRA), and the 
solutions are aggregated to constitute the final one. 

The splitting process (Figure 1) is carried out as 
follows. If the number of nodes in the considered set is 
over the predefined threshold, a random node 𝑟 is 
chosen according to a uniform probability distribution. 
The considered set of nodes is therefore divided into 
two subsets: (i) the first one is made of nodes that close 
before the opening of 𝑟, (ii) the other is composed of the 
remaining nodes. 

In case after having selected the random node 𝑟 the 
splitting is not possible, a new random node is selected. 
This step is repeated again and again until a splitting is 
obtained, or a maximum number of attempts is 
reached. In the latter case, the set of nodes that was not 
possible to divide, is optimized as-is using the BRA. 

 
Figure 1. Representation of the problem decomposition. 

4.3. The optimization of the subsets 

The optimization of the subsets of nodes is made 
using a metaheuristic framework that makes use of the 
BRA. Before describing this procedure, two variables, 
namely 𝛼 and 𝛽, should be introduced: 

- 𝛼 ∈ (0,1) is the parameter of the quasi-
geometric distribution in equation (1), 

- 𝛽 ∈ (0,1] is a variable that represents, in the 
current iteration, how much of the solution is 
destructed and reconstructed to create a new 
solution for the subset. 

The procedure for the optimization of the subsets 
always starts with setting 𝛽 at a low starting value (e.g., 
0.1), and the current solution at the greedy one, in 

which, given node 𝑗, the next node (i.e., 𝑗 + 1) is selected 
as the node that minimizes the cost function in 
equation (3). 

𝑐𝑜𝑠𝑡!,!&' = 𝑚𝑎𝑥	{𝜏𝑗 + 𝑝𝑗 +	𝑑𝑗,𝑗+1; 	𝑠𝑗+1} + 𝑚𝑎𝑥	{0; 	𝜏𝑗+1 + 𝑝𝑗+1 − 𝑒𝑗+1}.       (3) 

Then, at each iteration of the algorithm until the 
stopping criteria are met, given 𝑚 the length of the 
current solution for the subset, the last 𝑚 ∙ 𝛽 nodes are 
removed and reinserted to create a new possible 
solution (Figure 2). If the new solution is better than 
the current one, this latter is replaced and 𝛽 is reset at 
the low starting value, otherwise 𝛽 is increased in order 
to destruct and reconstruct a greater part of the current 
solution during the next iteration. 

 
Figure 2. Representation of destruction and reconstruction process 

used to create new solutions. 

The reconstruction of the current solution (or part of 
it) is made using the BRA. The nodes to append to the 
solution are sorted from the best one to the worst one 
according to equation (3) (where 𝑗 in this case is the last 
node of the solution under construction). Each of them 
is assigned a probability of being included, that 
depends on its position in list determined using 
equation (1) (Figure 3); the node to include is therefore 
randomly selected. The process is repeated until the 
new solution is complete. 

 
Figure 3. Representation of the selection of each node included in 

the solution. 

5. Validation and results 

The algorithm was implemented in Go© 
programming language and tested on a standard 
personal computer Intel Quad Core i7 CPU at 3.6GHz 
with 8Gb RAM and Ubuntu 18.04© operative system. 
Being Go garbage collected, the program does not 
execute as fast as those written in C or C++; 
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nonetheless, it turns out to be reasonably fast for a real 
implementation, as also demonstrated by the 
computational times observed. The code is also 
available open-source at the following link: 
https://github.com/mattianeroni/Divide-Et-Impera. 

In order to provide a robust validation, the algorithm 
was compared to that proposed by Ferreira da Silva and 
Urrutia (2010), which, compared to the plethora of 
existing algorithms for solving the TSPTW, is relatively 
new, and, according to the Scopus database is one of the 
most cited documents. Moreover, the authors of this 
algorithm have taken into account very complicated 
and big sized problem, and, as proven in their paper, 
they already outperform two old but very important 
algorithms, such as the generalized heuristic by 
Gendreau et al. (1998), and the simulated annealing 
with variable penalty described in Ohlmann and 
Thomas (2007). 

Before carrying out a comparison, a parameters 
tuning is needed. In this respect, the proposed 
algorithm offers an additional advantage. As matter of 
fact, it has very few parameters to optimize, and, as 
shown by the parameters tuning below, it is quite 
insensitive to them. The parameter of the quasi-
geometric distribution 𝛼 has been set equal to 0.9 
according to the suggestions found in literature 
(Grasas et al. 2017). The only two remaining parameters 
are (i) the predefined length of the subsets (i.e., 𝛾), and 
(ii) the number of iterations for the BRA. Four possible 
combinations of these parameters have been tested on 
three problems of different complexity, chosen from 
the benchmarks successively used for testing. The 
selected values for 𝛾 are respectively 30 and 50, while 
the tested number of iterations for the BRA are 1500 
and 3000. We are aware that the greater is the number 
of iterations the higher is the possibility to have a better 
solution; however, at first, we believe a trade-off 
between performance quality of the solution is due, 
secondly, this is true only into the single subsets of 
node and not for the final complete solution.  

The results of the parameters tuning are presented 
below, in Table 1. Being the proposed algorithm subject 
to stochasticity, it has been iterated 10 times for each 
combination parameters-benchmark, and in the table 
are presented the average results and the standard 
deviations. 

Table 1. Results of the parameters’ tuning.  

Benchmark 𝜸 Iterations of 
BRA 

Avg. 
Cost 

St.Dev. 
Cost 

Avg. Comp. 
time [s] 

St.Dev. Comp. 
time [s] 

n200w100_00
1 

30 3000 10248 61 0.921 0.098 
30 1500 10248 61 0.401 0.036 

50 3000 10213 0 1.183 0.067 
50 1500 10213 0 0.566 0.057 

n400w500_00
5 

30 3000 22114 0 2.223 0.194 
30 1500 22193 69 1.155 1.495 
50 3000 22154 69 2.659 0.323 

50 1500 22193 69 2.400 0.136 

n350w200_00
5 

30 3000 18268 0 1.571 0.080 
30 1500 18216 0 1.127 1.600 

50 3000 18320 90 2.090 0.064 
50 1500 18268 90 1.750 0.048 

Results of parameters tuning show that there is no 
significant correlation between the parameters’ value 
and the results of the algorithm. As expected, iterating 
more times the BRA, the computational time is slightly 
longer and the average cost is slightly lower; however, 
we do not consider both differences as relevant for 
preferring a setting instead of another. To carry out the 
tests, we opted for 𝛾=30, and iterations=3000. We are 
aware that these parameters should be tuned again 
when the algorithm is implemented on problems of 
different average complexity, but we are confident 
their impact on results is not crucial. 

The results of testing and simulations are presented 
in Appendix A at the end of the manuscript (Table 2), 
where the proposed algorithm is compared in terms of 
cost of the best solution and computational times with 
results from the algorithm proposed by Ferreira da 
Silva and Urrutia (2010). Again, since our algorithm is 
subject to stochasticity, it has been iterated 10 times on 
each benchmark, and the results presented in Table 2 
refer to the average result and the standard deviation 
calculated on these 10 iterations.  

For the implementation of the algorithm proposed 
by Ferreira da Silva and Urrutia, we used the C++ 
implementation open-sourced by the authors at the 
following link: 
https://homepages.dcc.ufmg.br/~rfsilva/tsptw/#insta
nces. 

The benchmark values have been taken from the 
same repository, and their nomenclature can be 
interpreted as follows. Given the name of a benchmark 
problem (say for instance n200w100_001, the first 
benchmark of Table 2), the number after the ‘n’ 
represents the number of nodes, the number after ‘w’ 
represents the size of the time windows, and the last 
three numbers are a unique ID to distinguish that 
problem from others problems with the same 
characteristics. 

As presented in Appendix A, the proposed algorithm 
is always able to outperform the one proposed by 
Ferreira da Silva and Urrutia. On average the proposed 
solutions are 0.85% better, and the algorithm is 
extremely reliable, since the coefficient of variation 
(𝜎/𝜇) calculated on the presented results is always less 
than 1%. The computational time is surprising. The 
proposed algorithm is 100÷1000 times faster, even if 
the comparison algorithm was implemented in C++. A 
comparison of the number of solutions explored would 
allow us to go deeper into this difference, although we 
have not been able to do it because our algorithm is 
iterating more times on subsets of nodes only. A gross 
estimate made on the basis of the average number of 
subsets in which each problem is split says that our 
algorithm explores less solutions, and this might be the 
reason for the shorter computational time. 
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6. Conclusions  
This paper aimed at presenting a hybrid algorithm 

developed on the bases of the Divide-and-Conquer 
approach and the Biased Randomized Algorithm for 
solving the Traveling Salesman Problem with Time 
Windows, a common problem implemented to solve 
logistics issues. The solution has been designed for 
planning transportation activities; although, it can be 
implemented in several other contexts where the 
TSPTW can find application. The proposed algorithm 
has been compared to another algorithm proposed by 
the scientific community, and it turned out to be very 
efficient (seeking a better solution in all the analyzed 
benchmarks) and obtaining it in surprising short 
computational times.  

It presents of course some limitations and it lacks 
realism in the assumption of cost-in-time. We 
therefore aim to better explore these criticalities in 
occasion of future works. More in detail, the possible 
future research perspectives may concern: (i) the 
testing and implementation of the same algorithm in 
some real contexts of application of the TSPTW such as 
transportation or production scheduling, essential step 
to refine the algorithm since it would let emerge 
practical issues and concerns which can be observed 
only after real implementations;  (ii) the consideration 
of customer-dependent delay penalties, in a scenario 
where there are some trusted and prominent 
customers, and a delay in delivery to these customers 
would have a greater impact; (iii) the combination of 
the proposed algorithm with the well-known Clarke-
Wright savings algorithm, in order to apply it to a 
Vehicle Routing Problem with Time Windows (El-
Sherbeny, 2010). 

Moreover, once the algorithm will be adapted to deal 
with more vehicles, a real case study of a company 
operating within the field of express deliveries is 
intended to be carried out: firstly, historical data as far 
as the travel time of their journeys will be recorded; 
then, the algorithm will be operatively implemented 
for a sufficient time in order to assess whether this 
solution could lead to tangible benefits and savings 
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Appendix A 
Table 2. Results of the numerical validation.  

Benchmark 

Ferreira Da Silva 
and Urrutia (2010) Proposed algorithm 

Benchmark 

Ferreira Da Silva 
and Urrutia (2010) Proposed algorithm 

Cost Comp. time 
[s] 

Avg. 
Cost 

St.Dev. 
Cost 

Avg. Comp. 
time [s] 

St.Dev. Comp. 
time [s] Cost Comp. time 

[s] 
Avg. 
Cost 

St.Dev. 
Cost 

Avg. Comp. 
time [s] 

St.Dev. Comp. 
time [s] 

n200w100_001 10402 5.515 10213 0 0.566 0.057 n350w100_005 19238 46.337 19121 26 1.679 0.190 

n200w100_002 10707 4.497 10580 28 1.049 0.111 n350w200_001 18199 49.523 18059 4 1.645 0.254 

n200w100_003 10313 4.850 10239 1 1.025 0.100 n350w200_002 19190 45.863 18987 0 1.711 0.177 

n200w100_004 10562 5.015 10513 0 1.124 0.413 n350w200_003 17594 49.235 17466 8 1.568 0.188 

n200w100_005 10972 5.082 10904 20 0.909 0.232 n350w200_004 18539 47.076 18352 28 1.945 0.548 

n200w200_001 10906 6.021 10863 0 1.174 0.515 n350w200_005 18421 50.149 18372 0 1.571 0.080 

n200w200_002 11221 5.932 11117 4 0.981 0.038 n350w300_001 18603 53.818 18517 0 4.188 3.933 

n200w200_003 10474 5.899 10339 21 0.904 0.080 n350w300_002 18453 56.712 18321 42 1.964 0.672 

n200w200_004 10513 6.095 10464 0 2.133 1.937 n350w300_003 18386 54.103 18215 23 1.672 0.131 

n200w200_005 10490 6.271 10311 0 0.931 0.187 n350w300_004 18071 57.652 17881 31 2.537 1.912 

n200w300_001 10240 7.462 10065 8 0.853 0.095 n350w300_005 18489 57.806 18359 23 1.574 0.085 

n200w300_002 10482 7.281 10397 50 0.882 0.040 n350w400_001 17551 62.707 17439 0 1.577 0.116 

n200w300_003 10946 7.236 10764 40 0.831 0.127 n350w400_002 18318 57.423 18074 14 1.585 0.269 

n200w300_004 10671 7.190 10529 14 0.838 0.032 n350w400_003 18302 59.344 18062 13 1.491 0.409 

n200w300_005 10420 7.328 10369 0 0.783 0.078 n350w400_004 19420 62.279 19361 31 1.598 0.222 

n200w400_001 10524 8.643 10454 67 0.981 0.208 n350w400_005 18249 56.102 18126 16 1.607 0.097 

n200w400_002 10250 8.307 10078 48 1.157 0.393 n350w500_001 18918 58.864 18779 0 1.656 0.224 

n200w400_003 10909 9.325 10870 0 1.872 1.093 n350w500_002 18499 58.356 18417 8 1.656 0.276 

n200w400_004 10242 8.672 10106 31 2.403 2.690 n350w500_003 18789 59.703 18612 74 1.681 0.216 

n200w400_005 10546 9.290 10472 44 1.026 0.433 n350w500_004 19635 59.197 19546 43 2.458 1.147 

n200w500_001 10901 9.678 10768 80 0.795 0.076 n350w500_005 19379 57.516 19230 84 1.802 0.409 

n200w500_002 10260 10.334 10148 20 1.054 0.203 n400w100_001 20089 57.246 20002 27 2.351 0.923 

n200w500_003 10499 9.458 10442 17 0.933 0.192 n400w100_002 21056 56.473 20845 0 1.751 0.315 

n200w500_004 10080 9.985 10074 0 1.024 0.174 n400w100_003 21334 57.498 21284 0 1.613 0.093 

n200w500_005 10476 10.542 10320 154 1.045 0.409 n400w100_004 20975 56.028 20823 54 1.749 0.136 

n250w200_001 12876 11.936 12717 47 2.284 0.724 n400w100_005 20395 55.923 20214 0 1.827 0.234 

n250w200_002 13098 12.572 12928 33 1.405 0.414 n400w200_001 21260 70.165 21132 22 1.817 0.064 

n250w200_003 13663 11.639 13520 2 1.458 0.590 n400w200_002 21604 62.211 21472 7 1.720 0.068 

n250w200_004 12976 11.112 12868 99 0.954 0.146 n400w200_003 20769 69.053 20624 0 1.766 0.287 

n250w200_005 12749 11.438 12633 0 1.537 0.409 n400w200_004 22169 68.588 22041 13 1.848 0.168 

n250w300_001 13965 13.866 13874 0 1.179 0.110 n400w200_005 21815 66.221 21652 58 1.906 0.166 

n250w300_002 13056 14.561 13008 0 2.567 2.159 n400w300_001 21779 80.853 21530 18 1.805 0.093 

n250w300_003 13884 15.080 13743 93 1.041 0.069 n400w300_002 20102 79.865 20022 72 1.807 0.174 

n250w300_004 13682 15.219 13542 2 1.698 0.685 n400w300_003 21367 102.188 21259 64 1.897 0.116 

n250w300_005 13190 13.440 13029 68 1.498 0.564 n400w300_004 22926 100.945 22859 0 2.402 0.795 

n250w400_001 13778 18.919 13702 58 1.209 0.332 n400w300_005 20655 90.303 20546 0 2.371 0.219 

n250w400_002 13208 17.662 13038 15 2.314 1.142 n400w400_001 21125 96.707 21024 73 1.735 0.172 

n250w400_003 13395 19.354 13251 62 1.340 0.030 n400w400_002 20857 92.308 20704 68 2.066 0.008 

n250w400_004 13225 17.955 12998 0 1.365 0.261 n400w400_003 21579 101.614 21436 59 1.725 0.264 

n250w400_005 12712 19.459 12579 0 1.860 1.066 n400w400_004 20198 105.519 20018 58 1.961 0.196 

n250w500_001 13098 20.128 13034 0 1.432 0.612 n400w400_005 21654 89.905 21540 31 1.873 0.059 

n250w500_002 13686 20.600 13571 13 1.047 0.123 n400w500_001 20073 109.416 19930 29 2.531 0.965 

n250w500_003 12833 22.249 12650 89 1.319 0.216 n400w500_002 20965 104.076 20844 17 2.736 0.772 

n250w500_004 12604 21.261 12544 18 1.347 0.249 n400w500_003 21551 109.525 21443 0 2.107 0.196 

n250w500_005 14064 21.128 13841 54 3.455 2.905 n400w500_004 20506 117.584 20296 13 2.165 0.528 

n350w100_003 18726 46.062 18655 18 1.686 0.374 n400w500_005 22329 102.001 22114 0 2.223 0.194 

n350w100_004 18307 40.320 18204 42 1.520 0.196        

 

 


