Smart container stacking in the yard

  • Lawrence Henesey 
  • Alexandr Silonosov, 
  • c Christopher Meyer, 
  • d Laima Gerlitz 
  • a,b Blekinge Institute of Technology, Biblioteksgatan 4, Karlshamn, 37440, Sweden
  • c,d Hochschule Wismar, University of Applied Sciences: Technology, Business and Design, Philipp-Müller-Str. 14, Wismar, 23966, Germany
  • c Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
Cite as
Henesey L.,  Silonosov A., Meyer C., Gerlitz L. (2021). Smart container stacking in the yard. Proceedings of the 23rd International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation (HMS 2021), pp. 37-44. DOI:


The workloads at seaport container terminals are increasing; thus, to enhance performance, the focus on improving container stacking is argued to be an integral factor that should be studied. The main problem is the number of unproductive moves of handling containers. A
well-planned stacking area is argued to be a key requirement in order to increase the performance of the terminal operations and assist in maximum utilization of existing resources. In this work, we investigated and then propose the best possible solution by evaluating GAs in order to minimize the unproductive moves often witnessed in terminal operations. A discrete-event simulation CSS model has been developed to study the inbound container stacking that considers in the model the following: the working of the yard crane, Automated Guided Vehicles, delivery trucks and obtain the simulation-based results of GA. We propose a mathematical model to minimize the container handling costs during stacking and retrieval operations in the container terminal yard.


  1. Sriphrabu,P.,Sethanan,K., and Arnonkijpanich, B. (2013). A solution of the container stacking problem by genetic algorithm. International Journal of Engineering and Technology, 5:45-49.
  2. Sgouridis,S.P. and Angelides, D.C. (2002). Simulation-based analysis of handling inbound containers in a terminal. Winter Simulation Conference, 1716-1724.
  3. Zhang, C., Liu,J.,  Wan, Y.,  Murty, K.G., and Linn, R.J. (2003). Storage space allocation in container terminals. Transportation Research Part B:37:883-903.
  4. El-Nasser, G.A., Said, A., and El-Horbaty, E.L. (2015). A simulation modeling approach for optimization of storage space allocation in container terminal. International journal of Computer, Control, Quantum and Information Engineering, 9:168-173.
  5. Moussi,R., Ndiaye, N.F., and Yassine, A. (2011). A genetic algorithm and new modeling to solve container location problem in port. International Maritime Transport and Logistics Conference, pp.1-14.
  6. Vidal, J.M., and Huynh, N. (2010). Building agent-based models of seaport container terminals. Workshop on Agents in Traffic and Transportation, 1-10.
  7. Dayama, N.R., Krishnamoorthy, M., and Ernst, A. (2014). Approach for solving the container stacking problem with route distance minimization and stack rearrangement considerations. Computer & Operations Research Journal, 52:68-83.
  8. Guven, C., Eliiyi, D.T. (2014). Trip allocation and stacking policies at a container terminal. Transportation Research Procedia, 3:565-573.
  9. Gharehgozli, A.H., Yu, Y., Koster, R.D., Udding, J.T. (2014). A decision-tree stacking heuristic minimizing the expected number of reshuffles at a container terminal. International Journal of Production Research, 52:2592-2611.
  10. Chen,C Hsu, W-J., and Huang, S-Y. (2003) Simulation and optimization of container yard operations: A Survey. In proceedings of international conference on port and maritime R and D and technology, 23-29.
  11. Jiang,  W., Dong, Y., and Tang, L. (2011) Simulation study on reshuffling problem in logistics operations of a container terminal yard. In Proceedings of International Conference on Service Operations, Logistics and Informatics IEEE, 291-296.
  12. Ndiaye, N.F., Yassine, A., and Diarrassouba, I. (2014). A hybrid ant colony and genetic algorithm to solve the container stacking problem at seaport terminal. In Proceedings of 2014 International Conference on Advanced Logistics and Transport (ICALT), 247-252.
  13. Wu,K.C., Ting, C.J., and Hernandez, R. (2009) Applying tabu search for minimizing reshuffling operation at container yards. Journal of the Eastern Asia Society for Transportation Studies, 8:1-15.
  14. Kang, S., and Wu, W.( 2015). A genetic algorithm to solve the container’s location allocation problem in rear storage yard. In Proceedings of IEEE 12th International Conference on networking, sensing and control, 33-38.
  15. Ries J., González-Ramírez R.G., Miranda P. (2014). A Fuzzy Logic Model for the Container Stacking Problem at Container Terminals. In: González-Ramírez R.G., Schulte F., Voß S., Ceroni Díaz J.A. (eds) Computational Logistics. ICCL 2014. Lecture Notes in Computer Science, 87:93-111.
  16. Hussein,M., and Petering, M.E.H. (2012). Genetic algorithm-based simulation optimization of stacking algorithms for yard cranes to reduce fuel consumption at seaport container transshipment, In Proceedings of 2012 IEEE Congress on Evolutionary Computation, 1-8.
  17. Yang, X., Zhao, N., Bian, Z., Chai, J., and Mi, C. (2015). An intelligent storage determining method for inbound containers in container terminal. Journal of Coastal Research, 73:197-204.
  18. Ayachi,I., Kammarti, R., Ksouri, M., and Borne, P. (2010). A genetic algorithm to solve the container storage space allocation problem. IEEE, International conference on Computational Intelligence and Vehicular System, 1-4.
  19. Bazzazi, M., Safaei,N., and Javadian, N. (2009). A genetic algorithm to solve the storage space allocation problem in a container terminal. Computers & Industrial Engineering, 56:44-52.
  20. Carraro,L.A., and Nunes de Castro, L. (2012). A clonal selection algorithm to minimize reshuffling in container stacking operations. 2012 IEEE Congress on Evolutionary Computation, 1-8.
  21. Ahmt, J., Sigtenbjerggaard, J. S., Lusby, R. M., Larsen, J., & Ryan, D. (2015). A New Approach to
    the Container Positioning Problem. DTU Management Engineering.
  22. Huang, S.Y., Li, Y., Lau, M., and Tay, T.C. (2014). Yard cranedeployment in container terminals”, Proceedings of the Winter Simulation Conference 2014, 1735-1746.
  23. Wu, K-C. and Ting, C-J., (2012). Heuristic approaches for minimizing reshuffle operations at container yard. Asian Pacific Industrial Engineering & Management Systems Conference, 1407-1415.
  24. Kim, K.H. and Kim, H.B (1998). The optimal determination of the space requirement and the number of transfer cranes for import containers. Computers & Industrial Engineering, 35:427-430, pp.427-430.
  25. Qiu, X. and Lam,J.S. (2014). Optimal storage pricing and pickup scheduling for inbound containers in a dry port system. IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2959-2964.
  26. Moussi, R., Yassine, A., Kansou,A., and  Galinho, T. Scheduling of lifting vehicle with        time
    windows in an automated port container terminal. 4th International Conference on Logistics, 2011, 55-61
  27. Aziz,A.B. and Zakaria, A. (2003). Container stacking and retrieval prototype simulation using genetic algorithms. Journal Technologi, Universiti Teknologi Malaysia, 38(A):61-74.
  28. Yan,L.,  Hai-gui, K.,  and Zhou P-F. (2010). Fuzzy optimization of storage space allocation in a container terminal. J. Shanghai Jiaotong Univ.(Sci.), 15(6):730-735.
  29. Hartmann, S.(2004). Generating scenarios for simulation and optimization of container terminal logistics. OR Spectrum, 26(2):171-192.
  30. Yang J. H. and Kim, K. H. (2006). A grouped storage method for minimizing relocations in block stacking systems. Journal of Intelligent Manufacturing,17:453-463.
  31. Xie X., Zheng, Y,, and Li, Y, (2015). Genetic algorithm and its performance analysis for scheduling a single crane. Discrete Dynamics in Nature and Society, Hindawi Publishing Corporation, 1-12.
  32. Salido, M.A., Sapena,O.,  Rodriguez, M., and Barber, F. (2009). Aplanning tool for minimizing reshuffles in container terminals. In Proceedings of 2009 21st IEEE International Conference on Tools with Artificial Intelligence, 567-571.
  33. Tang, L., Jiang, W.,  Liu, J., and Dong, Y. (2015). Research into container reshuffling and stacking problems in container terminal yards. IIE Transactions, Design and Manufacturing, 47(7):751-766.
  34. Hu, W., Hu, Z., Shi, L., Luo, P. and Song, W. (2012). Combinatorial optimization and strategy for ship stowage and loading schedule of container terminal, Journal of Computers, 7(8):2078-2092.
  35. Salido, M.A., Sapena, O., Barber, F. (2009). An artificial intelligence planning tool for the container stacking problem. In Proceedings of 2009 IEEE Conference on Emerging Technologies
    & Factory Automation.
  36. Lu, H.A. (2013). A container-based model for export container retrieval sequences in a yard block.  In Proceedings of 2013 International Conference on Technology, Informatics,
    Management, Engineering and Environment.71-76.
  37. Goldberg, D. (1989). Genetic algorithm to search, optimization and machine learning. Addison-Wesley Professional, Pearson. UK.
  38. Pangilinan, J.M.A.,  Janssens, G.K., and  Nishimura, E. (2013). Parametric analysis of evolutionary algorithm for storage location of outbound containers at seaport terminal. International Journal of Modelling in Operations Management, 3:31-52.
  39. Li, B. and Li, W-F. (2010).  Modeling and simulation of container terminal logistics systems using Harvard architecture and agent-based computing. Proceedings of the 2010 Winter Simulation Conference, 3396-3410.
  40. East West Project. (2012). Working paper on the terminal analysis within the consultant service for East West Transport Corridor II”, Task 4E,1-8.
  41. Chen, T. (1999). Yard operations in the container terminal a study in the unproductive moves”, Maritime Policy and Management, 25:27-38.
  42. Xie, J., Mei, Y., Ernst, A.T. Li, X., and Song, A. (2015). A restricted neighbourhood tabu search for storage location assignment problem. Proceedings of Congress on Evolutionary Computation (CEC), 2015, 2805-2812.
  43. Vishnu R.P. and Bhaskaran V.M. (2013). Improving the performance of Genetic Algorithm by reducing the population size, 2013, International Journal of Emerging Technology and Advanced Engineering 3(8): 86-91.