Role of Lean manufacturing tools on economic sustainability in the Mexican manufacturing industry

  • José Roberto Díaz Reza ,
  • Jorge Luis García-Alcaraz,
  • Manuel Arnoldo Rodríguez Medina,
  • Arturo Realyvásquez Vargas,
  • Karina Cecilia Arredondo Soto,
  • Emilio Giménez Macias 
  • a,b,c  Division of Research and Postgraduate Studies, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Juárez. Av. Tecnológico No. 1340 Fracc. El Crucero C.P. 32500. Ciudad Juárez, Chihuahua, México
  • Department of Industrial Engineering and Manufacturing, Autonomous University of Ciudad Juárez. Av. del Charro 450 Norte, Col. Partido Romero, Ciudad Juárez 32310, Chihuahua, México
  • Department of Industrial Engineering, Tecnológico Nacional de México/I.T. Ciudad Juárez. Av. Tecnológico 1340, Fuentes del Valle, 32500, Ciudad Juárez, Chihuahua, México
  • Chemical Sciences and Engineering Faculty, Universidad Autónoma de Baja California, Calzada Universidad #14418, Parque Industrial Internacional, Tijuana, 22390, México.
  • Department of Electrical Engineering, University of La Rioja. Luis de Ulloa 20, 26004, Logroño, La Rioja, Spain.
Cite as
Díaz Reza J.R., García-Alcaraz J.L., Rodríguez Medina M.A., Realyvásquez Vargas A., Arredondo Soto K.C., Jiménez Macias E. (2021). Role of Lean manufacturing tools on economic sustainability in the Mexican manufacturing industry. Proceedings of the 33rd European Modeling & Simulation Symposium (EMSS 2021), pp. 365-373. DOI:


Maquiladora companies apply lean manufacturing (LM) to reduce waste generated in their production process. This paper presents a structural equation model in which three LM tools (cellular manufacturing (CM), total productive maintenance (TPM), and just in time (JIT)) are related to economic sustainability (ES) using six hypotheses. The partial least squares technique evaluates the model with 239 responses to a survey applied to Mexican maquiladora companies. Based on this, a sensitivity analysis based on conditional probabilities is reported. The results indicate that CM facilitates the implementation of JIT and TPM and strengthens the ES of the maquiladora companies. The sensitivity analysis suggests that managers should generate an environment conducive to applying CM and TPM, as they are vital tools that facilitate obtaining ES. In addition, low levels of CM, JIT, and TPM are a high risk for achieving ES objectives.


  1. Ahuja, I. P. S., & Khamba, J. S. (2007). An evaluation of TPM implementation initiatives in an Indian manufacturing enterprise. Journal of Quality in Maintenance Engineering, 13(4), 338-352. doi:10.1108/13552510710829443 ming Multi-core and Many-core Computing Systems, Wiley
  2. Alawode, A., & Ojo, A. (2010). Just-in-time (JIT) manufacturing: a Panacea for low productivity and idle inventory in Nigerian industries. Journal of Engineering and Applied Sciences, 3(10), 742-747. 
  3. Alcaraz, J. L. G., Maldonado, A. A., Iniesta, A. A., Robles, G. C., & Hernández, G. A. (2014). A systematic review/survey for JIT implementation: Mexican maquiladoras as case study. Computers in Industry, 65(4), 761-773. doi:
  4. Cañas, J., Coronado, R., Gilmer, R. W., & Saucedo, E. (2013). The Impact of the Maquiladora Industry on U.S. Border Cities. Growth and Change, 44(3), 415-442. doi:
  5. Chiarini, A. (2014). Sustainable manufacturing-greening processes using specific Lean Production tools: an empirical observation from European motorcycle component manufacturers. Journal of Cleaner Production, 85, 226-233. doi:
  6. Defersha, F. M., & Chen, M. (2006). A comprehensive mathematical model for the design of cellular manufacturing systems. International Journal of Production Economics, 103(2), 767-783. 
  7. Díaz-Reza, J. R., García-Alcaraz, J. L., Avelar-Sosa, L., Mendoza-Fong, J. R., Sáenz Diez-Muro, J. C., & Blanco-Fernández, J. (2018). The Role of Managerial Commitment and TPM Implementation Strategies in Productivity Benefits. Applied Sciences, 8(7), 1153. Retrieved from
  8. Díaz-Reza, J. R., García-Alcaraz, J. L., Martínez-Loya, V., Blanco-Fernández, J., Jiménez-Macías, E., & Avelar-Sosa, L. (2016). The Effect of SMED on Benefits Gained in Maquiladora Industry. Sustainability, 8(12), 1237. Retrieved from
  9. Díaz-Reza, J. R., García-Alcaraz, J. L., Mendoza-Fong, J. R., Martínez-Loya, V., Macías, E. J., & Blanco-Fernández, J. (2017). Interrelations among SMED Stages: A causal model. Complexity, 2017. 
  10. Dorocki, S., & Brzegowy, P. (2014). The maquiladora industry impact on the social and economic situation in Mexico in the era of globalization. W: M. Wójtowicz, A. Winiarczyk-Raźniak (red.). Environmental and socio-economic transformations in developing areas as the effect of globalization. Kraków: Wydawnictwo Naukowe Uniwersytetu Pedagogicznego, 93-110. 
  11. Feld, W. M. (2000). Lean manufacturing: tools, techniques, and how to use them: CRC press.
  12. García-Alcaraz, J., Maldonado, A., Alvarado Iniesta, A., Cortes Robles, G., & Alor Hernández, G. (2014). A systematic review/survey for JIT implementation: Mexican maquiladoras as case study. Computers in Industry, 65(4), 761-773. doi:
  13. García-Alcaraz, J. L., Macías, A. A. M., Luevano, D. J. P., Fernández, J. B., López, A. J. G., & Macías, E. J. (2016). Main benefits obtained from a successful JIT implementation. International Journal of Advanced Manufacturing Technology, 86(9-12), 2711-2722. doi:
  14. García-Alcaraz, J. L., Prieto-Luevano, D. J., Maldonado-Macías, A. A., Blanco-Fernández, J., Jiménez-Macías, E., & Moreno-Jiménez, J. M. (2015). Structural equation modeling to identify the human resource value in the JIT implementation: case maquiladora sector. International Journal of Advanced Manufacturing Technology, 77(5-8), 1483-1497. doi:
  15. García, J. L., Rivera, L., Blanco, J., Jiménez, E., & Martínez, E. (2014). Structural equations modelling for relational analysis of jit performance in maquiladora sector. International Journal of Production Research, 52(17), 4931-4949. doi:10.1080/00207543.2014.885143
  16. Gupta, A. K., & Garg, R. (2012). OEE improvement by TPM implementation: a case study. International Journal of IT, Engineering and Applied Sciences Research, 1(1), 115-124. 
  17. Hoffman, J. I. E. (2019). Chapter 9 - Outliers and Extreme Values. In J. I. E. Hoffman (Ed.), Basic Biostatistics for Medical and Biomedical Practitioners (2 edition ed., pp. 149-155). Boston, MA, USA: Academic Press.
  18. IMMEX. (2021a). Monthly statistical information - Employment Retrieved from Ciudad Juárez, CHIH, Mexico: 
  19. IMMEX. (2021b). Monthly statistical information - Maquiladora imports and exports. Retrieved from Ciudad Juárez, CHIH, Mexico: 
  20. Iqbal, A., & Al-Ghamdi, K. A. (2018). Energy-efficient cellular manufacturing system: Eco-friendly revamping of machine shop configuration. Energy, 163, 863-872. doi:
  21. Kock, N. (2017). Structural equation modeling with factors and composites: A comparison of four methods. International Journal of e-Collaboration (IJeC), 13(1), 1-9. 
  22. Kock, N. (2019). Factor-based structural equation modeling with WarpPLS. Australasian Marketing Journal (AMJ). doi:
  23. Kock, N. (2019). From composites to factors: B ridging the gap between PLS and covariance‐based structural equation modelling. Information Systems Journal, 29(3), 674-706. 
  24. Kock, N. (2020). WarpPLS© User Manual: Version 7.0. ScriptWarp Systems: Laredo, TX, USA. 
  25. Konecny, P. A., & Thun, J.-H. (2011). Do it separately or simultaneously—An empirical analysis of a conjoint implementation of TQM and TPM on plant performance. International Journal of Production Economics, 133(2), 496-507. doi:
  26. Kumar, N., Mathiyazhagan, K., & Mathivathanan, D. (2020). Modelling the interrelationship between factors for adoption of sustainable lean manufacturing: a business case from the Indian automobile industry. International Journal of Sustainable Engineering, 13(2), 93-107. doi:10.1080/19397038.2019.1706662
  27. Martínez-Loya, V., Díaz-Reza, J. R., García-Alcaraz, J. L., & Tapia-Coronado, J. Y. (2018). SEM: A Global Technique—Case Applied to TPM. New Perspectives on Applied Industrial Tools and Techniques, 3-22. 
  28. Mohammadi, M., & Forghani, K. (2016). Designing cellular manufacturing systems considering S-shaped layout. Computers & Industrial Engineering, 98, 221-236. doi:
  29. Nallusamy, S., & Majumdar, G. (2017). Enhancement of Overall Equipment Effectiveness using Total Productive Maintenance in a Manufacturing Industry. International Journal of Performability Engineering, 13(2). 
  30. Parwani, V., & Hu, G. (2021). Improving Manufacturing Supply Chain by Integrating SMED and Production Scheduling. Logistics 2021, 5, 4. In: s Note: MDPI stays neutral with regard to jurisdictional claims in ….
  31. Pattanaik, L. N., & Sharma, B. P. (2009). Implementing lean manufacturing with cellular layout: a case study. The International Journal of Advanced Manufacturing Technology, 42(7), 772-779. doi:10.1007/s00170-008-1629-8
  32. Pinto, J. L. Q., Matias, J. C. O., Pimentel, C., Azevedo, S. G., & Govindan, K. (2018). Just in Time. In J. L. Q. Pinto, J. C. O. Matias, C. Pimentel, S. G. Azevedo, & K. Govindan (Eds.), Just in Time Factory: Implementation Through Lean Manufacturing Tools (pp. 25-38). Cham: Springer International Publishing.
  33. Singh, G., & Ahuja, I. S. (2015). An evaluation of just-in-time initiatives in the Indian industries. International Journal of Quality & Reliability Management, 32(6), 559-588. doi:10.1108/IJQRM-07-2013-0109
  34. Singh, K., & Ahuja, I. S. (2020). Structural equation modelling of transfusion of TQM-TPM model for Indian manufacturing industries. International Journal of Management Practice, 13(1), 47-73. 
  35. Sundar, R., Balaji, A. N., & Kumar, R. M. S. (2014). A Review on Lean Manufacturing Implementation Techniques. Procedia Engineering, 97, 1875-1885. doi: