Computer Simulation for Calculation of Expected Train Position at GNSS Signal Failure within a Railway Network Model

  • Jan Fikejz 
  • Department of Software Technologies, FEI, University of Pardubice, Pardubice, Czech Republic
Cite as
Fikejz J. (2021). Computer Simulation for Calculation of Expected Train Position at GNSS Signal Failure within a Railway Network Model. Proceedings of the 33rd European Modeling & Simulation Symposium (EMSS 2021), pp. 224-229. DOI:


The article describes the use of computer simulation for assessment of a rail vehicle in the GNSS signal failure situation in a railway network model. Attention is paid to a brief overview of the existing solutions in the field of rail vehicles localization on regional lines, and to the description of a multi-layer rail network
model. The article further deals with identification of rail vehicles position within a railway infrastructure model with the use of the GNSS system focusing on regional lines. The last part introduces the experiments of assessment of future position of a rail vehicle in the GNSS signal failure.
The real contribution of this job was the possibility to analyze and demonstrate scenarios correspond to the state of the process before and after the improvement through a simulation and some statistical tools like Brainstorming, Ishikawa diagram, DOE (design of experiments) and a linear programing. The Productivity was found to be increased by 350% when using tungsten carbide powder with a density of 3.5 g/cm3, already agreed with the raw material supplier plants. Likewise, a correct allocation of personnel for the sandblasting operation, obtained through an integer programming model, leads to an improved productivity.


  1. Dorazil, P. (2014) Základní vlastnosti kolejových obvodů bez izolovaných styků. Pardubice, 2008. Bachelor thesis. University of Pardubice. Supervisor: Milan Kunhart. 
  2. Fikejz, J. and A. Kavička. Utilisation of computer simulation for testing additional support for dispatching rail traffic. In: European Simulation and Modelling Conference, 2011. Ostende: EUROSIS - ETI, 2011. p. 225-231. ISBN 978-90- 77381- 
  3. detection non-standard situations within the new data layer of railway network model. In: The 26th European Modeling & Simulation Symposium. Bordeaux, 2014s. 371-377, ISBN 978- 88-97999-32-4 
  4. Giuninho, (2014) Low cost ERTMS implementation: ERTMS Regional. Railwaysignalling [online]. 2014 [cit. 2016-01-02]. 
  5. Kolář, P (2014). Řízení provozu na vedlejších železničních tratích. Seminář ZČU Plzeň-Fakulta elektrotechnická [online]. 2014 [cit. 2014-12-12]. RB_Kolar.pd
  6. Kom, (2011) - 144 - WHITE PAPER - A Roadmap to a Single European Transport Area - Creating a competitive and resource efficient transport system. 
  7. Kothuri, R. A A. Godfrind A E. Beinat. (2007) Pro Oracle Spatial for Oracle database 11g. New York, NY: Distributed to the book trade worldwideby Springer-Verlag New York, c2007, xxxiv, 787 p. ISBN 1590598997 
  8. Kothuri, R. et al. (2007) Pro Oracle Spatial for Oracle database 11g. New York, NY: Distributed to the book trade worldwideby Springer-Verlag New York, c2007, xxxiv, 787 p. ISBN 15-905- 9899-7. 
  9. Libbrecht, R. and H. Sturesson. (2005) LOCOPROL: Final Report [online]. 2005 [cit. 2015-06-10].: http://www.transport- 607/20060727_153639_69273_LOCOPROL_Final_Report.pdf 
  10. Mouna, L. (2013) Integrated Applications Promotion Programme: Train Integrated Safety Satellite System (3InSat) Demonstration 
  11. project, Rome 2013,[online]. [cit. 2015-06-10]. https://artes 04-2013.pdf 
  12. Redding, L. (2014) Satloc: a high-tech saviour for low-density lines. Railjournal [online]. UK, 2014 [cit. 2016-01-02]. high-tech-saviour-for-low-density-lines.html?channel=533