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Abstract 
The topic of the paper is simulation-based sensitivity analysis with emphasize on the use of the small-sample Latin Hypercube 
Sampling simulation method.  Three approaches are described in the paper: Spearman’s rank-order correlation, covariance-
based sensitivity analysis and input perturbation-based sensitivity analysis. Software tools are briefly described, especially SEAN 
software as an effective sensitivity analysis environment developed to simplify sensitivity analysis of a user-defined numerical 
model. An example application is presented. 
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1. Introduction 

Sensitivity analysis (SA) is a crucial part of 
computational modelling and simulation-based 
structural reliability assessment. Therefore, it has 
received much attention in the literature in the past 
decade. SA is important to reduce a space of random 
variables for stochastic calculation, building the 
response surface, training neural networks, etc. Several 
interrogations are possible, and several SA methods 
have been developed, giving rise to a vast and growing 
literature. Overview of available methods is given in 
review papers, e.g. Novák at al. (1993), Kleijnen (2010), 
Borgonovo and Plischke (2016), Antucheviciene et al. 
(2015).  

Versatile sensitivity indices for nonlinear non-
monotonic problems are known to be based on Sobol’ 
decomposition of functions (Sobol 1993, Sobol 2001). 
Sudret (2008) introduced generalized polynomial 
chaos expansions to build surrogate models that allow 
one to compute the Sobol’ indices analytically. 

Important topics are influence of statistical 
correlation in SA and artificial neural network-based 
sensitivity analysis (Pan at al., 2021) or usage of 
Cramér-von Mises distance (Novák and Novák, 2019). 
Kala (2021) proposed a new sensitivity measure based 
on the difference between superquantile and 
subquantile. 

There are generally two types of sensitivity analyses. 
Local sensitivity analysis focuses on behavior of 
function around a point of interest (e.g. one-at-a-time 
and screening). Global sensitivity analysis investigates 
the whole design domain considering probability 
distribution of input random variables, e.g. Kala (2016), 
Kala and Valeš (2017). Global SA represents powerful 
tool for uncertainty quantification of mathematical 
model e.g. regression-based methods and analysis of 
variance (ANOVA). Local and global sensitivity analysis 
has different purpose, and the interpretation of their 
results is frequently inaccurate or even erroneous. This 
is because the user often uses just one “available” 
method and states global conclusions without a deeper 
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knowledge of the SA problem. 

The common definition of an engineering problem 
involving uncertainty and randomness, which is to be 
numerically analysed is as follows. A random variable Z 
represents a random response of the studied 
engineering system (e.g. a structure). In statistical 
analyses, Z may represent the random response of a 
system. Random variable Z is a function of random 
variables 𝐗 = 𝑋!, 𝑋", … , 𝑋#!"# : 

𝑍 = 	𝑔(𝐗) (1) 

where the function 𝑔(𝐗), a computational model, is a 
function of a random vector X. Random vector X follows 
a joint probability distribution function (PDF) 𝑓$(𝐗). In 
general, its marginal variables can exhibit a statistical 
correlation too. 

With respect to the treatment of uncertainties in 
stochastic computational mechanics, three main task 
categories can be generally distinguished: 
• Statistical analysis: Approaches focused on the 

estimation of the statistical moments of Z such as 
means, variances, etc.; 

• Sensitivity analysis: Approaches aimed at the 
quantification of the sensitivity of outputs 
(response Z) due to the variation of input basic 
variables X; 

• Reliability analysis: Approaches aimed at the 
calculation of theoretical failure probability. 

The aim of this paper is to present quite simple and 
easy-to-use techniques for sensitivity analysis based 
on a small sample Monte Carlo type simulation. 
Because they are easy to understand and use, they can 
compete with other advanced SA methods due to their 
simplicity. The methods presented here were 
implemented into SEAN software for straightforward 
and fast utilization together with a statistical 
simulation environment. Therefore, basic information 
on a small-sample statistical simulation and a related 
software tool is provided first. 

2. Statistical simulation 

2.1. Small-sample simulation 

An effective method for statistical analysis of 
computationally demanding structural systems is 
small sample simulation technique of the Monte Carlo 
type. A special implementation of this method, called 
Latin Hypercube Sampling (LHS), seems to be the most 
effective. The technique can efficiently cover a 
multidimensional space of random variables with a 
small number of simulations (McKay at al., 1979; Stein, 
1987). 

The main feature of the LHS method is that the range 
of univariate random variables is divided into Nsim 
intervals (Nsim is number of simulations). The values 
from the intervals (random selection, the median or the 

mean value) are then used in the simulation process. 
The selection of the intervals is performed in such a 
way that the range of the probability distribution 
function of each random variable is divided into 
intervals of equal probability 1/Nsim. The samples are 
chosen directly from the distribution function based on 
an inverse transformation of the univariate 
distribution function (Figure 1). The representative 
parameters of variables are selected randomly, being 
based on random permutations of integers k=1, 2, ..., 
Nsim.  Every interval of each variable must be used only 
once during the simulation. A preferable LHS strategy 
is the approach suggested by Huntington and Lyrintzis 
(1998), where the representative value of each interval 
is the mean value (Figure 1): 

𝑥%,' =
∫ 𝑥𝑓%(𝑥)d𝑥
($,&
($,&'(

∫ 𝑓%(𝑥)d𝑥
($,&
($,&'(

= 𝑁)*+1 𝑥𝑓%(𝑥)d𝑥
($,&

($,&'(
 (2) 

Here, fi is the probability density function of variable 
Xi, and the integration limits are: 

𝑦%,' = 𝐹%,! 4
𝑘

𝑁)*+
6 ,			𝑘 = 1,… ,𝑁)*+ (3) 

The sample averages exactly equal the mean values 
of the variables, and the variances of the sample sets 
are much closer to the target values than in other 
selection schemes. A robust technique to impose 
statistical correlation based on the stochastic method 
of optimization called simulated annealing has been 
proposed by Vořechovský and Novák (2009). 

 
Figure 1. Samples as probabilistic means of intervals. 

2.2. Software FReET 

LHS simulation technique, described above, is essential 
methods implemented in software FReET (Novák et al., 
2014). It is designed as a user-friendly tool for 
simulation of random variables according to their 
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probability distribution functions (vector 𝐗) and to 
process numerically user-defined response/limit state 
function 𝑔(𝐗). Uncertainties propagation concept is 
illustrated in Figure 2 by “input and output” software 
windows. 

 

 
 

Figure 2. Uncertainties propagation concept in FReET: “Random 
variables” window - INPUT (above); “Reliability” window with 
empirical histogram - OUTPUT, (below) 

The concept of program FReET is characterized by 
the aim of providing a very practical software tool that 
can be used and handled very easily – in a 
straightforward feasible way.  State-of-the-art 
probabilistic algorithms are implemented in FReET to 
compute the probabilistic response and reliability. 
FReET is a modular computer system for performing 
probabilistic analysis developed mainly for 
computationally intensive deterministic modeling and 
the running of user-defined tasks/subroutines. 

3. Sensitivity analysis 

3.1. Non-parametric rank-order statistical 
correlation 

The relative effect of each basic random variable on 
structural response can be measured using the partial 
correlation coefficient between each basic input 
variable and the response variable. With respect to the 
small-sample simulation techniques of the Monte 
Carlo type utilized for the reliability assessment of 
time-consuming nonlinear problems, the most 
straightforward and simplest approach uses non-

parametric rank-order statistical correlation (Iman 
and Conover, 1980). This method is based on 
assumption that the random variable which influences 
the response variable most considerably (either in a 
positive or negative sense) will have a higher 
correlation coefficient than the other variables. For a 
detailed discussion of rank-order statistical 
correlation see Vořechovský (2012). Non-parametric 
correlation is more robust than linear correlation and 
more resistant to defects in data. It is also independent 
of probability distribution. Because the model for the 
structural response is generally nonlinear, a non-
parametric rank-order correlation is used by means of 
the Spearman correlation coefficient: 

𝑟),% =
6∑ ;𝑞-% − 𝑝-?

"#
-.!

𝑁/ −𝑁 ,			𝑟),% ∈ 〈−1,1〉 (4) 

where qji is the rank of a representative value of the 
random variable Xi in an ordered sample of N simulated 
values used in the jth simulation and pj is the rank of the 
response variable obtained in the same simulation. 

Although the crude Monte Carlo simulation method 
can be used to prepare random samples, it is 
recommended to use an appropriate sampling scheme, 
such as the stratified Latin hypercube sampling 
described above. This method utilizes random 
permutations of the number of layers of the 
distribution function of the basic random variables to 
obtain representative values for the simulation. When 
using this method, the ranks qji in Equation (4) are 
directly equivalent to the permutations used in 
sampling. 

Non-parametric rank-order correlation can be 
depicted using parallel coordinates (Wegman, 1990). 
Instead of an orthogonal representation of (qji,pj), they 
are drawn in parallel and pairs of points are joined by 
lines. A strong positive influence (high correlation 
coefficient) results in parallel lines between the input 
variable and the response variable, while a strong 
negative influence results in a bundle of intersecting 
lines. 

3.2. Covariance-based sensitivity analysis 

SA in terms of coefficient of variation (Novák et al., 
1993) is another simulation-based sensitivity method 
widely utilized for the optimum selection of dominant 
random variables. In this approach, the ratio between 
the partial coefficient of variation of resistance and the 
coefficient of variation of a selected basic variable is 
calculated for a case in which the selected random 
variable is the only one treated as random in the 
simulation process.  

When using a Monte Carlo type simulation, a 
simulated set of realizations of structural response 
variable Rj (j = 1, 2, …, Nsim), where Nsim is the number of 
simulations, is statistically evaluated and its coefficient 
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of variation COVR can be determined. The number of 
variables Nvar, representing e.g. material properties or 
load, can be defined as random in the simulation 
process. Let us designate the partial coefficient of 
variation (i = 1, 2, …, Nvar) for a case in which the variable 
Xi is the only one treated as random and is defined using 
its mean value and coefficient of variation. The other 
basic variables are kept as deterministic constants at 
their mean values. The partial sensitivity factor 𝛼%012 for 
the basic random variable Xi is then defined as: 

𝛼%012 =
COV3$
COV$$

 (5) 

This procedure requires additional computational 
effort, since the set of values of structural response 
variable Ri and its coefficient of variation   need to be 
evaluated with additional Nvar sets of simulations. 
Therefore, in cases when the evaluation of an original 
model is time-consuming, e.g. a nonlinear finite 
element method (FEM) model is employed, a suitable 
type of surrogate model is needed in order to reduce the 
computational time to an acceptable level. 

Sensitivity factor 𝛼%012 in Equation (5) expresses the 
relative influence of individual input random variables 
on the variability of structural response. If Nvar basic 
variables are considered as random ones, the 
coefficient of variation of the response variable COVR 
can be calculated using an approximate formula in the 
form: 

COV3 ≈ HI;𝛼%012COV$$?
"

#)*+

%.!

 (6) 

It can be seen from Equation (6) that the actual 
influence (not the relative one) of random variable Xi is 
represented by the COV3$

"   value. Such sensitivity may be 
easily depicted using a pie chart. 

3.3. Input perturbation-based sensitivity analysis 

The input perturbation algorithm (Scardi and 
Harding, 1999), is the simplest way to interrogate a 
model. It produces sensitivity analysis results based on 
the assessment of the effect of input perturbation in 
each input on the neural network output (Gevrey et al., 
2003). The proper adjustment of the values of each 
explicative variable while keeping all the others 
unchanged allows the effect of the output variables 
corresponding to each perturbation in the input 
variable to be recorded. The result of sensitivity 
analysis is yielded by ranking the effect on output 
induced by the same manner of perturbation in every 
input variable. The input variable, whose perturbation 
influences the output most, possesses the highest 
sensitivity or importance. 

In principle, the output increases or decreases as the 
selected input variable increases. The changes to the 
input variable take the form of 𝑋%∗ = 𝑋% + 𝛿, where 𝑋% is 
the selected input variable, and 𝛿 is the perturbation 
value. The input variables can be ranked according to 
the increasing magnitude of the output due to each 
input variable change. In other words, the result is a 
sensitivity analysis outcome. 

It is common to choose a perturbation value 𝛿 as an 
increment or decrement in the percentage of the input 
variable. However, this approach fails to take into 
account the specific variance of random variables. 
Therefore, an alternative approach can be 
recommended where 𝛿 is represented by a standard 
deviation 𝜎, e.g. ±3𝜎. This alternative approach directly 
reflects the variability of every input random variable 
(Downing et al., 1985). 

4. Software SEAN 

Above-described sensitivity analysis methods were 
implemented into the SEAN software. SEAN is a 
software environment that has been developed to 
simplify sensitivity analyses of user-defined numerical 
models. It uses FReET software as a simulation 
processor, thanks to which it significantly extends 
possibilities of model definition and subsequent 
sensitivity analysis in a user-friendly way. The 
software architecture is built on visual scripting 
language (Liu at al., 2007), which allows the user to 
easily create user-defined scripts. So, users are not 
required to have any programming experience. Visual 
scripting languages might be understood as 
programming languages that help to build program 
operating multiple other programs encapsulated 
within separated nodes. The environment then handles 
mutual communication and data transfer among 
separate applications. The structure of the 
environment allows adding and development of the 
single nodes (programs) without impact on the inner 
architecture of the environment. It is, therefore, 
suitable for gradual development, and it allows us to 
implement even existing applications relatively quickly 
into the environment. SEAN was developed based on 
brother visual scripting library dedicated for 
reliability-based optimization of the general tasks 
(Slowik and Novák, 2019). The further versions of SEAN 
will likely become part of this brother software 
solution. The first version, however, works as the 
stand-alone software meant to be utilized for 
sensitivity analysis of general models. 

GUI of SEAN is based on standard QMainWindow 
class in order to ensure basic dialog functionality 
necessary for possible further implementation of SEAN 
within another software solution of dialog window. The 
example of appearance of the script created in SEAN 
environment is captured in the Figure 3, documenting 
node architecture of solution. 
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Figure 3. The script created in SEAN environment. 

5. Example of application 

We present an application of sensitivity analysis for 
shear ultimate capacity of LDE7 TT roof girders, that 
were produced by Franz Oberndorfer GmbH & Co KG, 
details for deterministic modelling can be found in 
Strauss et al. (2017) and stochastic modelling has been 
performed recently by Slowik at al. (2020). 
Computational modelling was extremally time 
consuming as regular hexagonal finite element (FEM) 
mesh consisted of 61784 finite elements (Figure 4) and 
one simulation took app. 12 hours. Utilization of small-
sample simulation technique and related simulation-
based sensitivity analysis was therefore necessary. 

 

 
Figure 4. Computational mode – FEM mesh. 

 

The utilized complete stochastic model is 
summarized in Table 1, which displays random 
quantities and their stochastic parameters. The 
employed variables are E – Young´s modulus (E – 
concrete, Es – steel reinforcement, Et – tendons), ft – 
tensile strength, fc – compressive strength, Gf – 
fracture energy, ρ – density of the concrete mixture, fys 
– yield strength of steel reinforcement, fyt – yield 
strength of prestress tendons, I.L. – model uncertainty 
for immediate losses of prestress, L.T.L. – model 
uncertainty for long term losses of prestress and P – 
initial prestressing force. Note that COV stands for 
coefficient of variation and PDF is probability density 
function. Table 2 displays utilized statistical 
correlation matrix for concrete. 

 

 

 

Table 1. Utilized stochastic model.  

Parameter Mean COV in % PDF 
E (GPa) 34.8 10.6 Lognormal (2 

par) 
ft (MPa) 3.9 10.6 Lognormal (2 

par) 
fc (MPa) 77.0 6.4 Lognormal (2 

par) 
Gf (J/m2) 219.8 12.8 Lognormal (2 

par) 
ρ (ktons/m3) 0.0023 4.0 Normal 
Es (GPa) 200.0 2.0 Normal 
fys (MPa) 610.0 4.0 Normal 
Et (GPa) 195.0 2.0 Normal 
fyt (MPa) 1387.9 2.5 Normal 
P (MN) 0.0835 6.0 Normal 
I. L. (–) 1 10.0 Lognormal (2 

par) 
L. T. L. (–) 1 10.0 Lognormal (2 

par) 

 

Table 2. Utilized correlation matrix for concrete.  

 E ft fc Gf ρ 
E 1 0.5 0.8 0.5 0 
ft 0.5 1 0.7 0.8 0 
fc 0.8 0.7 1 0.6 0 
Gf 0.5 0.8 0.6 1 0 
ρ 0 0 0 0 1 

 

Let us emphasize here that sensitivity analysis may 
be profoundly affected by the correlation among input 
random variables. The correlation among variables 
might be understood as a stochastic description of the 
complex natural relations which are not directly 
involved within a numerical model. Sensitivity analysis 
of the correlated model captures the cumulative effects 
of interdependent parameters. Such analysis 
corresponds to real-life behavior of the modelled 
entity, but it does not provide objective information of 
the influence of numerical model parameters to the 
observed output. Thus, it is necessary to analyze 
uncorrelated space as well to identify the actual role of 
input random variables.  

The obtained results for correlated space are 
depicted in Figure 5 and for uncorrelated space in 
Figure 6 (for the most dominating variables only). In 
both cases, the essential material characteristics of 
concrete are apparent. It is possible to see the 
significant difference between correlated and 
uncorrelated space. Generally, in correlated space, 
there is a high correlation among concrete material 
characteristics, and thus their influence is together 
dominant in comparison to other variables. For correct 
interpretation of such results, correlated variables 
must be assumed as a group of variables. Note that, 
information about sensitivity in correlated space is 
valid only for this one stochastic model, including the 
given dependency structure. The mutual influence of 
concrete material parameters observed in model with 
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correlation was verified by analysis of model without 
correlation showing that introduced uncertainty has a 
significant influence on immediate losses of 
prestressing. According to expectation, the 
compressive strength of concrete does not influence 
the model’s performance (for given limit state). The 
significant influence of Young’s modulus of concrete 
might be explained by the fact that it is involved within 
the utilized model for evaluation of prestressing losses. 
The assumption of uncorrelated material 
characteristics is not realistic, but such information 
may be crucial for the reduction of the stochastic 
model. 

 

 
Figure 5. Spearman rank-order correlation between input random 
variables and the ultimate shear strength of precast prestressed 
concrete roof girders for correlated space. 

 
Figure 6. Spearman rank-order correlation between input random 
variables and the ultimate shear strength of precast prestressed  
roof girders for uncorrelated space. 

6. Conclusions 
The paper presents three simulation-based sensitivity 
analysis methods which can be easily used to real-
world structural engineering problems. These are often 
computational demanding taking into account the 
nonlinearity of the materials. Efficiency is emphasized 
using the stratified LHS simulation method. 
Information is provided on the developed software 
tools that will allow to analyze the influence of input 
parameters on the response of the analyzed structure. 
The presented techniques were successfully applied to 
several engineering tasks, one of them is briefly shown 
in the paper. The presented software tools may be 
routinely applied to any problem in the advanced 
design/assessment of engineering tasks. 
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