Drone detection with YOLOv5

  • Jiri Kralicek 
  • a, University of Defence, Kounicova 65, Brno, 662 10, Czech Republic
Cite as
Kralicek J. (2021). Drone detection with YOLOv5. Proceedings of the 11th International Defence and Homeland Security Simulation Worskhop (DHSS 2021), pp. 63-69. DOI: https://doi.org/10.46354/i3m.2021.dhss.009
 Download PDF


We propose a fast and accurate method for visual drone detection based on YOLOv5 architecture providing state-of-the-art performance. The proposed method aims to drone detection in combat and real-world environments for military use based on visual detection in the visible and infrared spectrum. The method provides precision/recall of 99.1/98.5% and 99.0/95.3% for RGB and infrared videos from the AntiUAV dataset.


  1. Aker, C. and Kalkan, S. (2017). Using deep networks for drone detection. 2017 14th IEEE International Con ference on Advanced Video and Signal Based Surveillance (AVSS), pages 1–6. 
  2. Al-Emadi, S., Al-Ali, A., Mohammad, A., and Al-Ali, A. (2019). Audio based drone detection and identi ca tion using deep learning. In 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC), pages 459–464. 
  3. Anwar, M. Z., Kaleem, Z., and Jamalipour, A. (2019). Machine learning inspired sound-based amateur drone detection for public safety applications. IEEE Transactions on Vehicular Technology, 68(3):2526– 2534. 
  4. Bochkovskiy, A., Wang, C.-Y., and Liao, H. (2020). Yolov4: Optimal speed and accuracy of object de tection. ArXiv, abs/2004.10934. 
  5. Carrio, A., Vemprala, S., Ripoll, A., Saripalli, S., and Campoy, P. (2018). Drone detection using depth maps. pages 1034–1037. 
    Coluccia, A., Ghenescu, M., Piatrik, T., De Cubber, G., Schumann, A., Sommer, L., Klatte, J., Schuchert, T., Beyerer, J., Farhadi, M., Amandi, R., Aker, C., Kalkan, S., Saqib, M., Sharma, N., Khan, S., Makkah, K., and Blumenstein, M. (2017). Drone-vs-bird detection challenge at ieee avss2017. pages 1–6. 
  6. de Quevedo, Á. D., Urzaiz, F. I., Menoyo, J. G., and López, A. (2018). Drone detection with x-band ubiq uitous radar. 2018 19th International Radar Symposium (IRS), pages 1–10. 
  7. Girshick, R. (2015). Fast r-cnn. In 2015 IEEE Inter national Conference on Computer Vision (ICCV), pages 1440–1448. 
  8. He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 2980–2988. 
  9. Jarabo-Amores, M. P., Mata-Moya, D., del Hoyo, P. G., Bárcena-Humanes, J., Rosado-Sanz, J., Rey-Maestre, N., and Rosa-Zurera, M. (2018). Drone detection feasibility with passive radars. 2018 15th European Radar Conference (EuRAD), pages 313–316. 
  10. Jian, M., Lu, Z., and Chen, V. (2018). Drone detection and tracking based on phase-interferometric doppler radar. 2018 IEEE Radar Conference (RadarConf18), pages 1146–1149. 
  11. Jin, R., Jiang, J., Qi, Y., Lin, D., and Song, T. (2019). Drone detection and pose estimation using relational graph networks. Sensors (Basel, Switzerland), 19. 
  12. Jocher, G., Stoken, A., Borovec, J., NanoCode012, ChristopherSTAN, Changyu, L., Laughing, tkianai, yxNONG, Hogan, A., lorenzomammana, AlexWang1900, Chaurasia, A., Diaconu, L., Marc, wanghaoyang0106, ml5ah, Doug, Durgesh, Ingham, F., Frederik, Guilhen, Colmagro, A., Ye, H., Jacobso lawetz, Poznanski, J., Fang, J., Kim, J., Doan, K., and Yu, L. (2021). ultralytics/yolov5: v4.0 - nn.SiLU() activations, Weights & Biases logging, PyTorch Hub
  13. Lee, D., La, W. G., and Kim, H. (2018). Drone detec tion and identi cation system using arti cial intelli gence. 2018 International Conference on Information and Communication Technology Convergence (ICTC), pages 
  14. Liu, H., Qu, F., Liu, Y., Zhao, W., and Chen, Y. (2018). A drone detection with aircraft classi cation based on a camera array. IOP Conference Series: Materials Science and Engineering, 322:052005. 
  15. Liu, H., Wei, Z., Chen, Y., Pan, J., Lin, L., and Ren, Y. (2017). Drone detection based on an audio-assisted camera array. 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), pages 402–406. 
  16. Nalamati, M., Kapoor, A., Saqib, M., Sharma, N., and Blumenstein, M. (2019). Drone detection in long range surveillance videos. In 2019 16th IEEE Interna tional Conference on Advanced Video and Signal Based Surveillance (AVSS), pages 1–6. 
  17. Nuss, B., Sit, L., Fennel, M., Mayer, J. R., Mahler, T., and Zwick, T. (2017). Mimo ofdm radar system for drone detection. 2017 18th International Radar Sympo sium (IRS), pages 1–9. 
  18. Ochodnický, J., Matoušek, Z., Babjak, M., and Kurty, J. (2017). Drone detection by ku-band battle eld radar. 2017 International Conference on Military Technologies (ICMT), pages 613–616. 
  19. Redmon, J. and Farhadi, A. (2017). Yolo9000: Better, faster, stronger. 2017 IEEE Conference on Computer Vi sion and Pattern Recognition (CVPR), pages 6517–6525. 
  20. Redmon, J. and Farhadi, A. (2018). Yolov3: An incre mental improvement. ArXiv, abs/1804.02767. Rezato ghi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., and Savarese, S. (2019). Generalized intersection over union. 
  21. Rydén, H., Redhwan, S. B., and Lin, X. (2019). Rogue drone detection: A machine learning approach. 2019 IEEE Wireless Communications and Networking Confer ence (WCNC), pages 1–6. 
  22. Shin, D.-H., Jung, D.-H., Kim, D.-C., Ham, J.-W., and Park, S. (2017). A distributed fmcw radar system based on ber-optic links for small drone detection. IEEE Transactions on Instrumentation and Measurement, 66:340–347. 
  23. Solomitckii, D., Gapeyenko, M., Semkin, V., Andreev, S., and Koucheryavy, Y. (2018). Technologies for e cient amateur drone detection in 5g millimeter wave cellular infrastructure. IEEE Communications Magazine, 56:43–50. 
  24. Svanstrom, F., Englund, C., and Alonso-Fernandez, F. (2020). Real-time drone detection and tracking with visible, thermal and acoustic sensors. ArXiv, abs/2007.07396. 
  25. Tan, M., Pang, R., and Le, Q. V. (2020). E cientdet: Scalable and e cient object detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10778–10787. 
  26. Wang, C.-Y., Liao, H., Yeh, I.-H., Wu, Y.-H., Chen, P.-Y., and Hsieh, J.-W. (2020). Cspnet: A new back bone that can enhance learning capability of cnn. 2020 IEEE/CVF Conference on Computer Vision and Pat tern Recognition Workshops (CVPRW), pages 1571–1580.