Next level training in logistics: evaluation of a virtual reality-based serious game for warehouse logistics

  • Christoph Schlüter 
  • Veronika Kretschmer
  • a,b Fraunhofer-Institute for Material Flow and Logistics IML, Joseph-von-Fraunhofer-Straße 2 – 4, Dortmund, 44227, Germany
Cite as
Schlüter C., Kretschmer V. (2020). Next level training in logistics: evaluation of a virtual reality-based serious game for warehouse logistics. Proceedings of the 19th International Conference on Modeling & Applied Simulation (MAS 2020), pp. 138-145. DOI:


Serious Games have a great potential to professionalise the training of employees in intralogistics. Using virtual reality (VR) and established serious game mechanics trainees can be prepared for their future tasks in logistics in a motivating, individual and sustainable manner. The Fraunhofer IML developed a VR-based learning game for warehouse logistics in cooperation with the DEKRA Akademie that simulates the receiving goods process. It will be included as a training module in the DEKRA Akademie portfolio. An evaluation study on cognitive and physical ergonomics explored the human-machine interaction and the suitability of the virtual training for warehouse trainees. Study results clarify that it is a user-friendly, motivating educational game. The implementation concept of the VR application is presented as a direct consequence of the Fraunhofer IML VR strategy.


  1. Arnab S., Lim T., Carvalho M.B., Bellotti F., de Freitas S., Louchart S., Suttie N., Berta R., de Gloria A., 2015. Mapping learning and game mechanics for serious games analysis. British Journal of Educational Technology, 46 (2), 391–411.
  2. Baltrusch S.J., van Dieën J.H., van Bennekom C.A.M., Houdijk H., 2018. The effect of a passive trunk exoskeleton on functional performance in healthy individuals. Appl Ergon, 72, 94–106.
  3. Bangor A., Miller J., Kortum P., 2009. Determining What Individual SUS Scores Mean: Adding an
    Adjective Rating Scale. Journal of Usability Studies, 4(3), 114–123.
  4. Brooke J., 1996. SUS: A “quick and dirty” usability scale. In: Jordan P. W., Thomas B., Weerdmeester B. A., McClelland A. L. (eds.), Usability Evaluation in Industry. London: Taylor and Francis.
  5. Clark D.B., Tanner-Smith E.E., Killingsworth S.S., 2017. Digital Games, Design, and Learning: A
    Systematic Review and Meta-Analysis. Review of educational research, 86 (1), 79–122.
  6. DIN EN ISO 6385:2016-12, 2016. Grundsätze der Ergonomie für die Gestaltung von Arbeitssystemen; Deutsche Fassung EN ISO 6385:2016. 
  7. Grier R.A., 2015. How high is high? A Meta-Analysis of NASA-TLX global workload scores. Proceedings of the Human Factors and Ergonomics Society 59th Annual Meeting, 1727–1731.
  8. Hart S. G., Staveland L. E., 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In: Hancock P. A., Meshkati N. (eds.), Human mental workload, 139–183. Amsterdam: Elsevier. 
  9. Hirsch-Kreinsen H., 2016. Digitalisierung und Einfacharbeit. Bonn: Abteilung Wirtschafts- und
    Sozialpolitik, Friedrich Ebert Stiftung. Available from:
    .pdf [accessed 26 March 2020]
  10. Jaschinski W., König M., Mekontso T.M., Ohlendorf A., Welscher M., 2015. Computer vision syndrome in presbyopia and beginning presbyopia: Effects of spectacle lens type. Clinical and Experimental Optometry, 98 (3), 228–33.
  11. Krohne H.W., Egloff B., Kohlmann C.-W., Tausch, A., 1996. Untersuchungen mit einer deutschen
    Version der “Positive and Negative Affect Schedule” (PANAS). Diagnostica, 42, 139–156.
  12. Lamb R.L., 2016. Examination of the Effects of Dimensionality on Cognitive Processing in Science: A Computational Modeling Experiment Comparing Online Laboratory Simulations and Serious Educational Games. Journal of Science Education and Technology, 25 (1), 1–15.
  13. Laugwitz B., Held T., Schrepp M., 2008. Construction and Evaluation of a User Experience Questionnaire. In: Holzinger, A. (eds.), HCI and Usability for Education and Work: Proceedings of the 4th Symposium of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society, November 20-21, 63–76, Graz (Austria), Berlin, Heidelberg: Springer.
  14. Longo, F., Nicoletti, L., & Padovano, A., 2019. Emergency preparedness in industrial plants: A
    forward-looking solution based on industry 4.0 enabling technologies. Computers in Industry, 105, 99–122.
  15. Neyer F.J.J., Felber J., Gebhardt C., 2016. Kurzskala Technikbereitschaft (TB). In: ZIS -Zusammenstellung sozialwissenschaftlicher Items und Skalen (eds.)
  16. Sailer M., 2016. Die Wirkung von Gamification auf Motivation und Leistung. Empirische Studien im Kontext manueller Arbeitsprozesse. Wiesbaden: Springer.
  17. Schubert T., 2003. The sense of presence in virtual environments: A three-component scale
    measuring spatial presence, involvement, and realness. Zeitschrift für Medienpsychologie, 15,
  18. Wilde M., Bätz K., Kovaleva A., Urhahne, D., 2009. Überprüfung einer Kurzskala intrinsischer
    Motivation (KIM). Zeitschrift für Didaktik der Naturwissenschaften, 15, 31–45.
  19. Witmer B. G., Singer M. J., 1998. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence, 7 (3), 225–240.