Assessment and Impact of CO2 Emissions Attributable to Rebar Used in Building Columns to Withstand Climatic Loads

  • Esteban Fraile-Garcia ,
  • Javier Ferreiro-Cabello,
  • Diego Sainz Prado ,
  • Emilio Jiménez
  • a,b,c Department of Mechanical Engineering, University of La Rioja, Av. de la Paz, 93, 26006 Logroño, Spain
  • Department of Electrical Engineering, University of La Rioja, Av. de la Paz, 93, 26006 Logroño, Spain
Cite as
Fraile-Garcia E., Ferreiro-Cabello J., Sainz Prado D., Jiménez E. (2020). Assessment and Impact of CO2 Emissions Attributable to Rebar Used in Building Columns to Withstand Climatic Loads. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 376-386. DOI: https://doi.org/10.46354/i3m.2020.emss.055

Abstract

The location of a building dictates the climatic loads to which it will be subjected during the use phase. To design building columns, wind and snow loads must be taken into consideration. This study analyzes the amount of rebar necessary depending on the building location. To this end, a nine-floor building is modeled with waffle slabs and pillars. The entire structure is made of reinforced concrete. The study covers 135 locations: wherein the wind zone, terrain category and topographic altitude vary. The structural analysis indicates the different amounts of rebar necessary and these quantities are compared with a reference location. The results corresponding to the different rebar quantities are analyzed according to location. The variation between the locations examined and the reference building site ranges from 4.5% to 74.9%. Based on this analysis, conclusions are drawn regarding the economic costs and CO2 emissions incurred by building columns (terrain category IV). The construction process is analyzed and the transportation of rebar to the building site is identified as a primary source of CO2 emissions. Design guidelines are presented to address wind and snow action, and minimize costs and emissions. Given the looming challenges of climate change, these aspects take on greater relevance.

References

  1. AENOR GlobalEPD Program (2014) ‘Environmental Product Declaration Long steel laminate
    construction unalloyed hot oven from: corrugated bars’, pp. 1–12.
  2. Baji, H. and Ronagh, H. R. (2011) ‘Effects of crosssectional shape on the reliability of RC columns’, Structural Concrete, 12(4), pp. 262–269. doi: 10.1002/suco.201100019.
  3. Beck, A. T., Kougioumtzoglou, I. A. and dos Santos, K. R. M. (2014) ‘Optimal performance-based design of non-linear stochastic dynamical RC structures subject to stationary wind excitation’, Engineering Structures, 78, pp. 145–153. doi: 10.1016/j.engstruct.2014.07.047.
  4. BS EN 1992-1-1 (2004) Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings, British Standards Institution. doi: [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC].
  5. Cao, B. and Zhao, X. (2015) ‘Optimal design for reinforced concrete tall building structures under multi-level constraints’, Jianzhu Jiegou Xuebao/Journal of Building Structures, 36, pp. 159–166.
  6. Choi, S. W. et al. (2016) ‘Sustainable design model to reduce environmental impact of building
    construction with composite structures’, Journal of Cleaner Production, 137, pp. 823–832. doi:
    10.1016/j.jclepro.2016.07.174.
  7. CYPE Ingenieros S.A. (2017) ‘CYPE Ingenieros S.A. Software for Architecture, Engineering and
    Construction. Spain, 2016.’ 
  8. Farghaly, A. S., Tobbi, H. and Benmokrane, B. (2012) ‘Concrete Columns Reinforced Longitudinally and Transversely by GFRP Bars’, ACI Structural Journal, 109(4), p. Research Report.
  9. Ferreiro-Cabello, J. et al. (2016) ‘Minimizing greenhouse gas emissions and costs for structures
    with flat slabs’, Journal of Cleaner Production, 137. doi: 10.1016/j.jclepro.2016.07.153.
  10. Gao, W., Otsuka, H. and Choi, J.-H. (2013) ‘Study on restoring force characteristics and deformation capacities of the flexible reinforced concrete pier with I-shape cross section under horizontal load’, in Proceedings of the 13th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC 2013.
  11. García-Segura, T., Yepes, V. and Alcalá, J. (2014) ‘Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability’, The International Journal of Life Cycle Assessment, 19(1), pp. 3–12. doi: 10.1007/s11367-013-0614-0.
  12. Hoenderkamp, J. C. D., Snijder, H. H. and Hofmeyer, H. (2012) ‘High-Rise Structures with Belt Bracing Subject to Lateral Load’, Advances in Structural Engineering, 15(1), pp. 65–75. doi: 10.1260/1369-4332.15.1.65.
  13. Hussain, R. R., Wasim, M. and Hasan, S. (2016) ‘Structural Evaluation for Gravity Loads’, in Solid
    Mechanics and its Applications, pp. 23–38. doi: 10.1007/978-94-017-7297-6_4.
  14. Jarkas, A. M. (2012) ‘Influence of Buildability Factors on Rebar Installation Labor Productivity of
    Columns’, Journal of Construction Engineering and Management, 138(2), pp. 258–267. doi:
    10.1061/(ASCE)CO.1943-7862.0000425.
  15. Jeong, J. et al. (2017) ‘An integrated evaluation of productivity, cost and CO 2 emission between prefabricated and conventional columns’, Journal of Cleaner Production, 142, pp. 2393–2406. doi: 10.1016/j.jclepro.2016.11.035.
  16. Jiang, Y. et al. (2015) ‘A nonlinear model of failure function for reliability analysis of RC frame
    columns with tension failure’, Engineering Structures, 98, pp. 74–80. doi:10.1016/j.engstruct.2015.04.030
  17. Jiang, Y. and Yang, W. (2012) ‘Research on values of load partial factors with large ratios of variable load effects’, Jianzhu Jiegou Xuebao/Journal of Building Structures, 33(12), pp. 130–135. 
  18. Kim, H., Ko, Y.-N. and Cho, J.-M. (2016) ‘Evaluation of Ambient Vibration Test Method for Historic Wooden Buildings Based on the Rigid Diaphragm Assumption’, Journal of Asian Architecture and Building Engineering, 15(2), pp. 287–294. doi:10.3130/jaabe.15.287.
  19. Kim, T. H. et al. (2015) ‘Performance assessment of advanced hollow RC bridge column sections’, Computers and Concrete, 16(5), pp. 703–722. doi:10.12989/cac.2015.16.5.703.
  20. Kimura, H. et al. (2007) ‘Structural Design of 80-Story RC High-Rise Building Using 200 Mpa Ultra-HighStrength Concrete’, Journal of Advanced Concrete Technology, 5(2), pp. 181–191. doi: 10.3151/jact.5.181.
  21. Liu, B. et al. (2017) ‘Experimental investigation and improved FE modeling of axially-loaded circular RC columns under lateral impact loading’, Engineering Structures, 152, pp. 619–642. doi: 10.1016/j.engstruct.2017.09.009.
  22. Martínez, F. J. et al. (2011) ‘Design of tall bridge piers by ant colony optimization’, Engineering
    Structures, 33(8), pp. 2320–2329. doi: 10.1016/j.engstruct.2011.04.005.
  23. de Medeiros, G. F. and Kripka, M. (2014) ‘Optimization of reinforced concrete columns according to different environmental impact assessment parameters’, Engineering Structures, 59, pp. 185–194. doi: 10.1016/j.engstruct.2013.10.045.
  24. Mohamed, H. M., Afifi, M. Z. and Benmokrane, B. (2014) ‘Performance Evaluation of Concrete
    Columns Reinforced Longitudinally with FRP Bars and Confined with FRP Hoops and Spirals under Axial Load’, Journal of Bridge Engineering, 19(7), p. 04014020. doi: 10.1061/(ASCE)BE.1943-5592.0000590.
  25. Murugesan, A. and Thirugnanam, G. S. (2014) ‘Experimental investigation on RC and retrofitted
    RC column under cyclic loading’, International Journal of Earth Sciences and Engineering, 7(3), pp. 1164–1170.
  26. Niwa, J. et al. (2012) ‘Experimental Study on the Possibility of Using Steel Fiber–Reinforced
    Concrete to Reduce Conventional Rebars in BeamColumn Joints’, Journal of Materials in Civil
    Engineering, 24(12), pp. 1461–1473. doi: 10.1061/(ASCE)MT.1943-5533.0000536.
  27. Olmati, P. et al. (2017) ‘Simplified reliability analysis of punching in reinforced concrete flat slab
    buildings under accidental actions’, Engineering Structures, 130, pp. 83–98. doi:10.1016/j.engstruct.2016.09.061.
  28. Osorio, E., Bairán, J. M. and Marí, A. R. (2017) ‘Analytical modeling of reinforced concrete
    columns subjected to bidirectional shear’, Engineering Structures, 138, pp. 458–472. doi: 10.1016/j.engstruct.2017.02.029.
  29. Poluraju, P. et al. (2012) ‘Economic design of concrete structure through judicious selection of materials at the early stage of design phase’, International Journal of Earth Sciences and Engineering, 5(2), pp. 358–362.
  30. Quang, K. M. et al. (2016) ‘Behavior of highperformance fiber-reinforced cement composite
    columns subjected to horizontal biaxial and axial loads’, Construction and Building Materials, 106, pp. 89–101. doi: 10.1016/j.conbuildmat.2015.12.087.
  31. Shraideh, M. S. and Aboutaha, R. S. (2013) ‘Analysis of steel-GFRP reinforced concrete circular columns’, Computers & concrete, 11(4), pp. 351–364. doi:10.12989/cac.2013.11.4.351.
  32. Sun, Z.-Y. et al. (2014) ‘Nonlinear Behavior and Simulation of Concrete Columns Reinforced by
    Steel-FRP Composite Bars’, Journal of Bridge Engineering, 19(2), pp. 220–234. doi:10.1061/(ASCE)BE.1943-5592.0000515.
  33. Thomas, A. et al. (2013) ‘Case Study on the Effect of 690 mpa (100 ksi) Steel Reinforcement on Concrete Productivity in Buildings’, Journal of Construction Engineering and Management, 139(11), p.04013025. doi: 10.1061/(ASCE)CO.1943-7862.0000699.
  34. Tian, J. J. and Li, H. (2013) ‘The Influence of Vertical Loads on Lateral Deformation of Steel Reinforced Concrete Column’, Advanced Materials Research, 639–640(1), pp. 782–785. doi:
    10.4028/www.scientific.net/AMR.639-640.782.
  35. Visintin, P. et al. (2012) ‘The reinforcement contribution to the cyclic behaviour of reinforced
    concrete beam hinges’, Earthquake Engineering & Structural Dynamics, 41(12), pp. 1591–1608. doi: 10.1002/eqe.1189.
  36. Xu, S.-Y. and Zhang, J. (2012) ‘Axial–shear–flexure interaction hysteretic model for RC columns under combined actions’, Engineering Structures, 34, pp. 548–563. doi: 10.1016/j.engstruct.2011.10.023.
  37. Yi, N.-H. et al. (2015) ‘Collision Capacity Evaluation of RC Columns by Impact Simulation and Probabilistic Evaluation’, Journal of Advanced Concrete Technology, 13(2), pp. 67–81. doi:
    10.3151/jact.13.67.
  38. Yuan, F., Wu, Y.-F. and Li, C.-Q. (2017) ‘Modelling plastic hinge of FRP-confined RC columns’,
    Engineering Structures, 131, pp. 651–668. doi: 10.1016/j.engstruct.2016.10.018.
  39. Zalewski, S. et al. (2013) ‘Beschreibung der Querkrafttragfähigkeit von stumpf gestoßenen
    Fertigteilstützen unter Berücksichtigung einer außergewöhnlichen Stoßbelastung’, Beton- und
    Stahlbetonbau, 108(7), pp. 441–451. doi: 10.1002/best.201300021.