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Abstract 

Over the past decade, machine learning has found a large number of applications in physics. Machine learning 
algorithms can extract the most informative features of the data, reduce the dimensionality and increase the 
signal-to-noise ratio. This article discusses the use of machine learning algorithms to increase the accuracy of 
the optical sensors based on optical fiber Bragg grating sensor and the hydrogen sensor based on Wood anomaly 
in a diffraction grating. We show that application of machine learning algorithms to experimental data 
processing allows reaching high accuracy and reduce level of noise in optical sensors. 
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1. Introduction 

Sensing is an important task for many scientific and 
engineering problems (Ignatov & Merzlikin, 2020; 
Nechepurenko et al., 2018; Tomyshev, Manuilovich, 
Tazhetdinova, Dolzhenko, & Butov, 2020). The 
important problem in sensing is sensor data 
processing. It allows both raising the sensitivity to a 
physically achievable limit and solving the problem of 
poor selectivity (Askim, Mahmoudi, & Suslick, 2013; 
Hotel, Poli, Mer-Calfati, Scorsone, & Saada, 2018; 
Johnson et al., 1997). Various methods are used in data 

processing, such as nonlinear regression, which is 
typically based on a theoretical analytical model. 
However, in some cases the parameters of interest can 
be determined imprecisely with the theoretical model 
(Kornienko et al., 2020) or cannot be derived from it 
because of its complexity. 

In such cases, machine learning (ML) can be 
applied. ML is a branch of computer science, which 
goal consists in automatically building a model of data 
without being explicitly programmed. Machine 
learning algorithms can simplify the structure of the 
data, automatically find patterns in it, and solve 
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problems with higher accuracy. 

Examples of ML algorithms are k-nearest 
neighbor method (Altman, 1992), decision tree-based 
algorithms such as gradient boosting (Friedman, 
2001), principal component analysis (PCA) (Gorban, 
Kégl, Wunsch, & Zinovyev, 2008) and artificial neural 
networks (Goodfellow, Bengio, & Courville, 2016). 

In sensing, ML algorithms are used to solve the 
problem of poor selectivity (Hotel et al., 2018; 
Kornienko et al., 2020) and to compensate sensor drift 
(Liu et al., 2019; Ma, Luo, Qin, Wang, & Niu, 2018; 
Wang et al., 2017; Zhao et al., 2019). However, ML 
algorithms are quite rarely used to increase the 
precision of the sensors with continuous sensor 
readings. 

In this paper, we apply ML approach for 
processing experimental data obtained with two 
different optical sensors. We use dimensionality 
reduction method such as principal component 
analysis and polynomial regression to predict the 
parameter of interest. We show that ML algorithms 
allow attainment of higher precision and reduce the 
level of noise in sensor readings. 

2. Application of Machine learning methods 
to optical sensors 

2.1. TFBG sensor 

We apply ML algorithms to data obtained in 
experiments with a tilted fiber Bragg grating (TFBG) 
sensor (Fig. 1) consisting of an optical fiber covered 
with a golden thin film and tilted Bragg grating inside 
the fiber core. The TFBG sensor working principle is 
the following. The fundamental mode excites some 
cladding modes and the surface plasmon (Chubchev, 
Nechepurenko, Dorofeenko, Vinogradov, & Lisyansky, 
2020) when scattered by the tilted Bragg grating. The 
typical scattering spectrum is shown in Fig. 2a. The 
spectral position of surface plasmon resonance is 
highly sensible to the refractive index of surrounding 
medium. Our goal is to find the way to predict the 
change in refractive index by the spectrum. 

Because of the model complexity, there is no 
precise analytical model for the dependence of the 
plasmon resonance frequency on the surrounding 
medium. For this reason, we apply ML algorithms to 
find the external refractive index from experimentally 
measured scattering spectrum. 

We conducted experiment where the TFBG sensor 
was surrounded by distilled water. Then, the refractive 
index was changed by mixing the water with small 
amounts of isopropanol. Isopropanol was added 27 
times. That is, 28 values of refractive index were 
obtained. The change in the water refractive index was 
calculated analytically. As the isopropanol was added, 
the associated spectra were measured. The number of 
spectra associated with each refractive index value 
varied from 5 to 11. The total number of spectra was 

equal to 202. Each spectrum consisted of 16001 values 
of signal amplitude at various wavelengths.  

Before applying ML algorithms, we conducted 
Fourier transform of the spectra to remove noise and 
the slowly varying part of the spectra. In Fig. 2b, an 
example of the filtered spectra is shown. This 
procedure is described in details in … . 

 
Figure 1. The scheme of the TFBG sensor. 

 

 
Figure 2. The example of the scattering spectrum. 

To find parameters of the ML algorithm, i.e. to 
train, and check its accuracy, a set of the measured 
values of refractive index was randomly split into 2 
sets in ratio of 4:1. The largest set named a training set 
was used to find the algorithm parameters the ML 
algorithm. The small set named test set was used to 
estimate the difference between the refractive index 
predicted by the ML algorithm and the refractive index 
calculated analytically. 
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Since the number of spectra is two orders of 
magnitude smaller than the number of the values in 
each spectrum in training set, the dimensionality 
reduction was applied. Otherwise, the number of 
parameters would be very high. Because of large 
number of parameters, ML algorithm can learn noise 
and demonstrate high error for test set despite the low 
error on the training set. To reduce the dimensionality 
of the spectrum, we used the principal component 
analysis (PCA). PCA allows approximating each 
spectrum with a linear combination of vectors named 
principal components: 

 
1

,
q

k ki i

i

S S a P
=

 +   (1) 

where 
kia  are the decomposition components, iP  is the 

principal components, q  is the number of principal 

components, 
1

/
N

k

k

S S N
=

=  is the averaged spectrum, 

and N  is the number of spectra in the training set. The 
error of the approximation with q  principal 
components, iP , is minimal if iP  are the spectra 
correlation matrix eigenvectors corresponding to its 
q  largest eigenvalues (Shalev-Shwartz & Ben-David, 
2014). The elements of the correlation matrix are 
defined by the equation 
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To determine q , we calculate the eigenvalues of the 
correlation matrix (Fig. 3). 

 
Figure 3. The histogram of the eigenvalues. 

In Fig.4, the principal components of the training set 
are shown. Since the correlation matrix is 
symmetrical, the principal components are 
orthogonal. Therefore, the coefficients 

kia  can be 

calculated via the equation ( ),ki i ka P S S= −  at 1iP = . 

The coefficients 
kia  are used as new variables instead 

of the spectral intensities, so that the number of 
variables equals 3 instead of 16001. 

 

 

 

 
Figure 4. The averaged spectrum (a) and the first (b), second (c), and 
third (d) principal components corresponding to the 3 maximum 
eigenvalues. 

To find the value of the refractive index from the 
principal component coefficients, we use polynomial 
regression. The degree of polynomial was equal to 7. 
The number of coefficients is equal to 120. The 
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coefficients of the polynomial are derived from the 
minimization of squared error with 

1L -regularization 
term: 
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The regularization term 
1

p

i

i

c
=

  in Eq. (3) shrinks the 

majority of coefficients towards zero and does not let 
the model to learn noise. 

2.2. Hydrogen dielectric Bragg grating sensor 

Another sensor we consider is a dielectric Bragg 
grating made of tungsten trioxide (WO3), which 
permittivity is sensitive to change in hydrogen 
concentration (Fig. 5). The Bragg grating structure 
creates a Wood anomaly in the transmission spectrum. 
The change of hydrogen concentration leads to the 
change of the frequency, width and depth of the Wood 
anomaly resonance. By measuring the transmittance 
spectra, the hydrogen concentration can be retrieved. 

During the experiment with the sensor, the 
hydrogen concentration assumed values of 100 ppm 
and 1000 ppm. The number of measured spectra was 
1538. A typical spectrum is shown in Fig. 6. The Wood 
anomaly resonant dip is located at the wavelength of 
673 nm (Fig. 6)  

A serious issue with the hydrogen sensor is the 
noise. The approximation of the resonant dip with 
asymmetric Fano resonance profile did not allow 
obtaining noise-free dependencies of the linewidth 
and the resonant wavelength on the hydrogen 
concentration. To reduce the level of noise, we apply 
PCA to the spectra around the Wood anomaly 
resonance. 

 
Figure 5. Optical scheme for testing gas sensing elements. 

 
Figure 6. Examples of the transmittance spectrum. The resonance 
dip is shown in the inset. 

Because of the high level of noise in non-resonant 
parts of spectra, we consider only resonant 
wavelength range. To process spectra, we apply PCA to 
resonant dip. The histogram of the correlation matrix 
eigenvalues is shown in Fig. 7. 

 
Figure 7. The eigenvalue histogram. 

Since the only one eigenvalue is significantly larger 
than the others, it is enough to take only one principal 
component 1P  into account and the decomposition 

coefficient ( )1 1,a P T T= − , where 
1

/
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=  is the 

average transmission spectrum, where 1538N =  is the 
number of spectra. T  and 1P  are shown in Fig. 8. 

  
Figure 8. The averaged spectrum (blue)and the first principal 
component (orange). 
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3. Results and Discussion 

In the case of TFBG sensor, we apply algorithm trained 
on the training set to the test set. Due to the 
regularization term in Eq. (3), only 7 out of 120 
coefficients are not equal to zero. We have found that 
the refractive index change mean absolute error for 
the test set is about 2*10-5 RIU (Fig. 9) and is the same 
order of magnitude as the error on the training set. 

In the case of the hydrogen sensor, PCA applied to 
the transmittance spectra leads to reduction of noise 
amplitude. In Fig. 10, we compare the value of 
decomposition coefficient for the first principal 
component a and the values of the transmittance at 
single Wood anomaly wavelength. 

 
Figure 9. The difference between the analytically calculated values 
of refractive index and the refractive index predicted by polynomial 
regression. Blue and orange dots correspond to training and test set, 
respectively. 

 

 
Figure 10. (a) The decomposition coefficient for the first principal 
component and (b) the transmittance at the Wood anomaly 
frequency vs time. 

 

4. Conclusions 

Optical sensors provide a complex response as 
compared to classical (resistive, etc.) ones. Namely, 
they give a whole spectrum instead of a single number. 
This makes machine learning (ML) methods very 
perspective in this field. We have shown that ML 
algorithms offer a great advantage in optical sensing. 
Using our experimental data from two different 
optical sensors, we demonstrate both enhancement of 
sensitivity and increase in the signal-to-noise ratio.  
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