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Abstract
We tackle the problem of developing an automated trading strategy to profit in the British intraday continuous electricity
markets. We first train a feedforward neural network to predict one hour ahead total electricity transmission system demand.
In live testing to ensure no look-ahead bias, we present forecast results with accuracy better than National Grid’s own
demand forecasts. We then train a second feedforward neural network, using our demand forecast as an input to the network,
to predict one hour ahead net imbalance volume (NIV), and use this predicted NIV as a trading signal to buy and sell
30-minute electricity contracts. In live testing, between 09 March and 22 March 2020, the trading algorithm made 599
simulated trades, with 431 trades returning a profit (an accuracy of 72%). These results demonstrate the potential of neural
network driven automated trading strategies to make significant risk-adjusted excess returns (i.e., profits) in the intraday
electricity markets.
Keywords: Algorithmic trading; energy trading; forecasting demand; forecasting imbalance volume; intraday markets

1. Introduction

In March 2001, New Electricity Trading Arrangements(NETA) were introduced in England and Wales to cre-ate a market where electricity is traded like any othercommodity. In the following year, market efficienciescaused wholesale prices to fall by 20%, while spreadsbetween buy and sell prices reduced dramatically (from£70/MWh to £17/MWh), making it much cheaper forelectricity generators (particularly those less able topredict output, e.g., wind farms) to balance their posi-tions (Ofgem, 2002).
On 05 November 2015, the Balancing and Settlement

Code (BSC) modification P305 introduced a number ofchanges to the calculation of energy imbalance pricesto improve the ability for electricity markets to betterbalance supply and demand (Ofgem, 2015, 2018). As aresult of P305, there has been a significant rise in thenumber of speculators looking to profit on short-termprice changes (Tribe, 2017, p.15), leading to a rapidgrowth of market trading volumes (EPEX, 2019).

Electricity markets in Great Britain (GB) are nowmature trading venues where considerable profits canbe made from correctly predicting energy imbalances.During any given period, if trader T predicts that thereis going to be excess power generated (a long period),then there is an expectation that prices will fall. There-fore, T should sell power at the start of the period (atprice ps), and then buy it back from the National Gridat the imbalance price (pi). If the prediction is correct,then ps > pi, giving T a profit of ps – pi. Conversely, if
T predicts a shortage of power (a short period), then Tshould buy at the start of the period (pb) and sell backat the imbalance price (pi), giving a profit of pi – pb.

In this paper, we introduce feedforward neural net-work models for predicting intraday demand in GB elec-tricity markets, using ELEXON’s open-source Balancing
Mechanism Reporting Service (BMRS) as data input. Wedemonstrate that our model forecasts electricity de-mand with significantly lower error than the demandforecast supplied by National Grid (the owners of the

311

https://creativecommons.org/licenses/by-nc-nd/4.0/.


312 | 32nd European Modeling & Simulation Symposium, EMSS 2020

high-voltage electricity transmission network in Eng-land and Wales, and the company responsible for bal-ancing system supply and demand). We next use ourdemand forecasts as an input to a second feedforwardneural network model to predict net imbalance volume(NIV) one hour ahead. Finally, we present a simpledirectional algorithm to trade 30-minute contracts inthe continuous intraday market, using our NIV fore-casts. In live testing between 09 March 2020 and 22March 2020 (making a prediction in real time, every30 minutes, to ensure no look-ahead bias), the tradingalgorithm suggested 599 trades, and was correct on431 occasions (i.e., 72% long/short trading accuracy).This is strong evidence that neural networks can beused to significantly improve electricity forecasts inGB markets; and the first published result demonstrat-ing forecasts can be profitably traded in this market.This paper describes research originally performed byPozzetti for her BSc thesis, which was supervised byCartlidge. For further details, see Pozzetti (2020).

2. Background

In Great Britain (GB), electricity is transmitted fromwhere it is produced to where it is needed throughthe transmission system, a network of high voltage elec-tricity wires that extend across the entire country andnearby offshore waters. Electricity can’t be cheaplystored in large amounts, so supply and demand mustbe matched at all times. National Grid is in charge ofbalancing supply and demand.
The transmission system supplies electricity to distri-

bution networks, which are lower voltage networks thatdeliver electricity to local customers and households.The transmission system is connected to distributionnetworks through grid supply points (see Figure 1). Thetransmission system is also connected to neighbouringcountries through physical links called interconnectors,which allow the transfer of electricity across borders.GB is currently connected to four countries: to France,Ireland, Belgium, and the Netherlands. There are alsoplans for interconnectors with Norway and Denmark.The sum of the individual demands from all the dis-tribution networks and interconnectors makes up thetotal transmission system demand.
The electricity wires in the UK were built to transmitelectricity at a frequency of around 50 Hz. A frequencythat is too high or too low can damage the transmis-sion infrastructure and cause a power blackout acrossthe entire country. National Grid aims to always keepthe frequency at 50 Hz, with an operational limit of

±0.2 Hz and a legal limit of ±0.5 Hz. National Grid isregulated by Ofgem, the Government’s Office For Gasand Electricity Markets.
An increase in generation, or a decrease in demand,causes the frequency to increase. Conversely, a decreasein generation, or an increase in demand, causes the

Figure 1. The transmission system (TS) delivers electricity to local dis-tribution networks, which supply electricity to individual customers.The TS connects to foreign countries through interconnectors.

frequency to decrease. To regulate the frequency of thetransmission wires it is necessary to balance electricitydemand and supply at all times. In order to balance thesystem, National Grid is in constant communicationwith generators and consumers connected to the trans-mission system. All entities follow a set of regulationscalled the Balancing and Settlement Code (BSC), which isadministered by ELEXON.
The electricity market is divided into half-hour pe-riods, called settlement periods. Each day has 48 set-tlement periods, starting at midnight. To balance thesystem, each settlement period National Grid needsto know what generators intend to generate and whatconsumers intend to consume. National Grid needsthis information before the start of the settlement pe-riod, so that it can understand the transmission systemimbalance, plan how to balance it, and take balancingactions.
Generators and suppliers submit their planned gen-eration or consumption—called physical notifications(PNs)—to National Grid for each settlement period.Positive PNs mean power generation, while negativePNs mean power consumption. One hour before thestart of each settlement period (called gate closure) thePNs of parties are frozen. At this point PNs become fi-nal, and are called final physical notifications (FPNs). Par-ties must try to adhere to submitted FPNs and shouldonly deviate from them at the instruction of NationalGrid.
Along with their intended generation/consumption,parties must submit their maximum possible genera-tion/consumption level, called maximum export/import

levels (MELs/MILs). MELs can be submitted at anytime, even past gate closure, to inform National Grid ofa sudden trip (i.e., when MEL is lower than the FPN).
Finally, parties have to submit notices to say howmuch it would cost for them to deviate from their final
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Table 1. BMRS Data Description
ID Feature Comments
1 Month Values: 1–12
2 Day of Week Values: 1–7
3 Settlement Period Half-hour intervals. Values: 1–48 (50 when clocks change due to daylight saving).
4 Final Physical Notification (FPN) Intended net generation of all power generators connected to the transmission system.
5 Wind FPN Intended net generation of UK wind farms only.
6 Interconnector FPN Net import/export from international markets.
7 Generator Trips Estimated energy not produced due to breakdowns (where MEL<FPN).
8 Wind Forecast National Grid’s forecast of energy produced from wind farms.
9 Intraday Solar Forecast National Grid’s forecast of energy produced from solar panels.
10 Temperature Forecast National Grid’s forecast of average UK temperature.
11 Day-ahead Demand Forecast National Grid’s transition system demand forecast a day in advance.
12 Day Demand Forecast National Grid’s forecast of transmission system demand 15 minutes before next period starts.
13 Rolling System Demand Actual metered transmission system demand, calculated at end of period.
14 Net Imbalance Volume (NIV) Net sum of all balancing actions taken by National Grid during period.
15 Market Index Price Average price of all half-hourly contracts traded during settlement period.
16 Imbalance Price Price used to settle the difference between contracted generation/consumption during period.

BMRS data available from ELEXON at: https://www.bmreports.com

physical notification. These notices are called bids and
offers, and are always submitted in pairs. An offer isa proposal to increase generation or reduce demandfor a price. A bid is a proposal to reduce generation orincrease demand for a price.

Following gate closure, National Grid is able to eval-uate/predict the net imbalance of the transmission sys-tem. National Grid does this by assessing the FPNs ofthe generators and suppliers and compares that assess-ment to its own demand forecasts for the settlementperiod. National Grid then assesses all the bids and of-fers for the settlement period and chooses the ones thatbest satisfy the balancing requirements of the trans-mission system. When a bid or offer is chosen, it isreferred to as a bid/offer acceptance (BOA). This processis called the balancing mechanism.
The net imbalance volume (NIV) of a settlement pe-riod, together with a number of other factors, will de-termine the so-called imbalance price of that period.Imbalance price is high in a short period (as more gen-eration is required) and low in a long period (as a re-duction in generation is required). Parties who haveunder-generated or over-consumed compared to theirFPNs, will have to buy that shortfall of energy at theimbalance price. Parties who have over-generated orunder-consumed will have to sell that extra energy atthe imbalance price.
This system allows speculative traders to buy andsell power contracts without producing or consumingany energy. For example, trader T can buy 50 MW ofpower for a settlement period without consuming anyenergy. The contracted amount for that period is 25MWh and the consumed amount is 0 MWh. Therefore,

T is required to sell that energy back to National Gridat the imbalance price. The spread (i.e., the difference)between the market price and the imbalance price de-termines trader T’s profit or loss.
Speculative traders attempt to predict the energy

imbalance of a future settlement period. If trader Tpredicts that there is going to be excess power (a longperiod), T should sell power for the period, and thenbuy it back from national grid at the imbalance price.If the prediction is correct, the imbalance price willlikely be lower than T sold it for, so T can buy back ata profit. This benefits traders, but is also beneficialfor National Grid, as it is cheaper to buy power at thelast minute from T than it would be to buy power froma generator. Therefore, these rules incentivise freemarket participants to balance the system, makingelectricity prices more stable. This ensures againstextreme prices during peak demand times, guaranteeslower electricity bills for households, and protects UKconsumers.
In Great Britain, physical power can be traded inmultiple markets. Here, we consider only 30-minutecontracts in the intraday continuous market. Contractsare for same day delivery, and market close (the lasttime that contracts can be traded) is 15 minutes beforea settlement period begins. In the following sections,we attempt to build a model for predicting energy im-balances, and we use that prediction to simulate algo-rithmic trading in the intraday continuous market.

3. Data

ELEXON provide publicly available data relating to theGB electricity transmission system through the Bal-
ancing Mechanism Reporting Service (BMRS), a platformused extensively by market participants to help maketrading decisions. BMRS data can be viewed onlineand can be accessed programmatically through theBMRS APIs. We downloaded BMRS data relating tothe generation, demand, and balancing mechanismfor every half-hour settlement period between January2019 and February 2020, inclusive. All files were pro-cessed programmatically, using a virtual machine on

https://www.bmreports.com
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Table 2. Demand Forecasting: Neural Network Inputs
ID Feature Period Loss (MW)
1 Month t
2 Day of Week t
3 Settlement Period t 12,386
6 Interconnector FPN t 8,244
10 Temperature Forecast t 8,081
8 Wind Forecast t 6,483
9 Intraday Solar Forecast t 5,873
13 Rolling System Demand t-2 1,405
11 Day-ahead Demand Forecast t 640
12 Day Demand Forecast t-1 627
12 Day Demand Forecast t-2 428

Output: Predicted Demand(t + 2); evaluated against Rolling System Demand(t + 2)
Final test loss after network hyperparameter tuning: 396 MW

Google Cloud. A single data table was created with20352 rows, each corresponding to a settlement period,
t, with columns containing the 16 features listed inTable 1. Data was split 80:20 for training and testing,respectively.

4. Forecasting Demand

We develop a model for forecasting total transmissionsystem demand (henceforth, simply “demand”) foreach settlement period. By plotting demand data (notshown), daily trends become clear. Demand is low-est during the night and starts rising around 6 am;dips in the middle of the day before increasing to apeak around 6-7pm; then steadily decreases. Winterdemand is significantly higher than summer demandfor every settlement period. The transmission sys-tem demand is also affected by embedded generation:more generation from solar panels and wind turbinesin the local distribution networks means lower demandfrom the transmission system. Finally, the transmis-sion system demand is affected by the electricity flowthrough interconnectors. If electricity is flowing outof the country, this will increase the demand from theUK transmission system, acting as extra demand fromabroad.
We used Google’s TensorFlow to build a feedforwardneural network to predict demand at t+2 (i.e., one hourahead), which we trained using the adaptive momentestimation (Adam) optimiser. For initial exploration ofinput features, we trained a series of networks for 50epochs, with loss function minimising absolute meanerror between network output and the ground truthvalue of Rolling System Demand(t + 2). Table 2 presentsthe final set of eleven features selected as network in-puts. Ordered from top to bottom, we see that test lossdecreases as additional features are added, for exam-ple: networks with only three input features (month,day of week, and settlement period) produce a demandforecast with high test loss of 12,386 MW; the additionof interconnector FPN as a fourth feature reduces testloss to 8,244 MW; and networks with all eleven input

features produce the lowest test loss of 428 MW.
To further improve performance, we next tuned thenetwork hyperparameters, resulting in a best perform-ing network with architecture containing: an inputlayer of 11 nodes (each corresponding to the input fea-tures listed in Table 2); two hidden layers of 50 nodeseach; and an output layer of 1 node. Training was per-formed over 1000 epochs (a greater number of epochsdemonstrated overfitting). We report a final trainingloss of 367 MW and testing loss of 396 MW.

4.1. Live Testing of Demand Forecast

When backtesting the performance of forecasts overtime-series data, it is easy to incorporate look-aheadbias such that data that would not have been available atthe time of the forecast is accidentally used as input intothe model. Such bias can greatly inflate performance,as the model is effectively looking into the future. Toguarantee no look-ahead bias, the best approach is tolive test the system in real time, on current data, sothat future information does not yet exist. To this end,we implemented our demand forecast model into a real-time system that downloads the latest data from theBMRS every 30 minutes, calculates the input variables(Table 2), and then prints the neural network’s onehour ahead demand forecast. This is the same processthat would be used in a live forecasting system.
We ran the software on Google Cloud from 09 March2020 to 22 March 2020. Approximately 600 forecastswere made over the course of two weeks. Live forecastswere compared to the actual metered demand duringeach period, giving a mean absolute error (MAE) of 378MW (equivalent to mean relative error of 1.2%). Thisvalue is similar to (and slightly better than) the MAErecorded during back-testing, therefore demonstratingthat the system has no look-ahead bias.
To put this forecasting error of 378 MW into context,we compare it against results reported by Amira Tech-nologies, a data science consultancy dedicated to theGB power sector. Their website states: “Amira Tech-nologies produce market leading electricity demandand renewable generation forecasts for the GB powersector”. In their report for Autumn 2019, they presenta graph showing that Amira’s transmission systemdemand forecast performance for one hour ahead hasMAE 364±10 (Amira Technologies, 2019). For the sameperiod, they also report National Grid’s BMRS one hourahead forecast performance as having MAE 470 ± 10.While the comparison is not exact (Amira’s reportederrors are for forecasts during the last quarter of 2019;while our errors are from forecasts during March 2020),results indicate that our neural network demand fore-cast has performance better than National Grid, andsimilar performance to a leading commercial provider.
Outperforming National Grid’s forecast is perhapsnot as surprising as it may at first appear, since Na-
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Table 3. NIV Forecasting: Neural Network Inputs
ID Feature Period Loss (MWh)
1 Month t
2 Day of Week t
3 Settlement Period t
4 Final Physical Notification (FPN) t
11 Day-ahead Demand Forecast t 274.90
* (NeuralNet) PredictedDemand t+2 249.15
14 Net Imbalance Volume (NIV) t-2 217.34
7 Generator Trips t 214.01
5 Wind FPN t
8 Wind Forecast t 211.96

Output: Predicted NIV(t + 2); evaluated against Net Imbalance Volume(t + 2)
* Predicted Demand(t + 2) is generated at time t by network described in Section 4
Final test loss after network hyperparameter tuning: 210.75 MWh

tional Grid make extensive use of regression modelsfor forecasting (Blaavand et al., 2017). These linearmodels are constructed using historical values for de-mand and various explanatory factors, such as weathervariables. Model errors may arise because of changes inthe general energy landscape (in particular, systemicincreases in wind and photovoltaic energy generationwitnessed in recent years), which might mean thatthe historical data on which the models are based isno longer representative of the current electricity sys-tem (Blaavand et al., 2017). To address these issuesin forecast errors, National Grid is currently undertak-ing a multi-year project to improve forecasting abilityby applying advanced statistical and machine learningmodelling techniques, to be completed in March 2022(National Grid ESO, 2020). We should therefore notbe too surprised that a neural network model is ableto improve upon a suite of linear regression models.In the next sections we demonstrate that forecastingwith accuracy greater than National Grid can form aconsistently profitable trading strategy.

5. Forecasting Net Imbalance Volume

In this section, we develop a neural network modelfor forecasting net imbalance volume (NIV) at t + 2(i.e., one hour ahead). The NIV is the net sum of allthe balancing actions taken by National Grid during asettlement period. To predict the NIV, it is necessaryto predict the difference between the demand and theindependent generation from power plants (the gen-eration that occurs without instruction from NationalGrid). This provides an estimate of the amount of bal-ancing actions that National Grid needs to take to keepthe system at a balanced frequency of 50 Hz.
We used Google’s TensorFlow to build a feedforwardneural network to predict net imbalance volume. Inputfeatures were explored using networks containing oneinput node corresponding to each input feature, twohidden layers of 20 nodes each, and one output nodecorresponding to forecast net imbalance volume at t+2.Networks were trained for 50 epochs, with loss func-

Figure 2. Distribution of NIV forecast errors during live testing.

tion minimising absolute mean error between outputand the ground truth value Net Imbalance Volume(t + 2).Table 3 presents the final set of ten features selectedas network inputs. Ordered from top to bottom, wesee that test loss decreases as additional features areadded, for example: 5 input features (month, day ofweek, settlement period, FPN, and day-ahead demandforecast) have test loss 274.90 MWh; 6 input features(the previous five inputs, plus Predicted Demand(t + 2),generated at time t by the optimised neural network de-scribed in Section 4), reduces test loss to 249.15 MWh;while using all 10 input features listed in Table 3 resultsin the lowest test loss of 211.96 MWh.
To further improve performance, we next tuned net-work hyperparameters, resulting in a best performingnetwork with architecture containing: an input layerof 10 nodes (corresponding to the features presentedin Table 3); two hidden layers of 50 nodes each; andan output layer of one node. Training was performedover 200 epochs (with more epochs, overfitting wasobserved). We report a final training loss of 179.75MWh and testing loss of 210.75 MWh.

5.1. Live Testing of NIV Forecast

To avoid the charge of look-ahead bias, we again livetested the NIV forecast between 09 March and 22 March2020, using the same procedure described in Section 4.1.The network produced approximately 600 live NIV fore-casts, giving a mean absolute error of 207.54 MWh(equivalent to mean relative error of 10.03%), with themajority of forecasts having error value below the mean(see error distribution presented in Figure 2).
The performance presented is difficult to contextu-alise since, as far as the authors are aware, there areno published one hour ahead NIV forecasts with whichto directly compare. An influential literature review byWeron (2014) on electricity price forecasting makes nomention of imbalance volume predictions. The nearestrelated work is by Garcia and Kirschen (2006), whoforecast one month ahead and one week ahead NIVpredictions for the purpose of trading in the forwards
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market. The best mean error of their one week aheadforecast is 514 MWh; however a direct comparison isunfair, since the forecast horizon of one week is muchlonger than our one hour horizon.

6. Trading the Electricity Market

Speculative traders in the electricity market buy andsell power without ever consuming or generating it.Their profit comes from the difference between themarket price at which they buy (or sell) power and theimbalance price at which they sell (or buy it back).
For short periods—where there is a shortage ofgeneration—in the vast majority of cases the imbalanceprice is higher than the average spot price; and for longperiods—where there is an excess of generation—theimbalance price is lower than the average spot price.Using BMRS data for 2019, we observed that almost96% of short periods had an imbalance price higherthan the market index price; and over 91% of long pe-riods had an imbalance price lower than the marketindex price. Therefore, in general, power traders aimto buy power at spot price if they predict a short period(in order to sell it back for a profit at imbalance price);and if they predict a long period, they aim to sell powerat spot price (in order to buy it back at a profit for lessat imbalance price).
Here, we introduce a minimal trading algorithm thatuses predicted net imbalance volume (PNIV) to trade:
If PNIV > 0 then Buy; else if PNIV < 0 then Sell; else Do Nothing.

The trading algorithm is deliberately simple, to ensurethat trading profits directly correlate with the qualityof PNIV. If a short period is forecast (i.e., PNIV > 0) thetrader buys at spot price and sells back at imbalanceprice. If a long period is forecast (i.e., PNIV < 0) thetrader sells at spot price and buys back at imbalanceprice. If the forecast is balanced (i.e., PNIV = 0) thetrader does not trade during the period.
We do not have access to the prices in the spot mar-ket. Spot prices are determined by the bids and offersthat market participants continuously submit to thelive market and are not published anywhere. The onlyway to access them is to have direct access to the mar-ket itself, which would require us to set up a company,complete an admission process, sign an agreementwith the European Commodity Clearing House (ECC),and deposit trading capital into the account. This isnot possible. Therefore, we evaluate the performanceof the trading algorithm by assuming that the traderbought/sold power at the market index price, whichis the average price of all half-hourly traded contractsduring a settlement period. This is a reasonable as-sumption: on average we expect that we can buy/sellfor the average price during the period. Over a largenumber of settlement periods, we expect this to be true.
We backtested the algorithm for all settlement peri-

ods during the calendar year 2019. In total, the algo-rithm traded 16,294 times (i.e., once every settlementperiod); with 70.8% of trades returning a profit (i.e.,the decision to Buy or Sell was correct 70.8% of thetime). Buy decisions were correct 70.4% of the timeand Sell decisions were correct 71.0% of the time, sug-gesting that the PNIV forecast is unbiased, with equalaccuracies in both directions. During 2019, approxi-mately 45% of periods were short, while approximately55% of periods were long. The trading algorithm choseto Buy 42% of the time and Sell 58% of the time , demon-strating that the PNIV forecast direction closely alignswith the real market imbalance.
To simplify profit calculations, we assume that eachtrade has size 2 MW (i.e., 1 MWh), which is a very smalltrade size relative to the market, and therefore guaran-tees that a trade of this size can be executed. By the endof 2019, the trading algorithm generated a simulatedprofit of £73,407. Given that contracts cost in the re-gion of £50/MWh, this profit demonstrates exceptionalpotential returns on minimal capital investment.

6.1. Live Trading the Electricity Market

As before, to ensure no look-ahead bias, we tested thetrading algorithm live between 09 March 2020 and 22March 2020, making trading decisions every 30 min-utes, before the market close for each settlement period.During this period, the algorithm made 599 trades,with 431 resulting in profit and 168 resulting in loss;giving an overall accuracy of 72%. Buy decisions werecorrect 73.6% of the time and Sell decisions were cor-rect 70.6% of the time. These directional accuracies arerelatively close, but may suggest that there is a smallbias towards Buy, indicating that the PNIV may slightlyunderestimate the true NIV.
To put this trading accuracy into context, let us con-sider a random trader that issues Buy decisions 45% ofthe time and Sell decisions 55% of the time (i.e., in thesame ratio as the short/long periods exhibited in themarket during 2019). Then, the chance of this randomtrader making profit in at least 400 of 599 trading pe-riods is less than 1 in 100 million. This clearly suggeststhat profiting 431 times out of 599 trades is extremelyunlikely to have occurred by chance.
During two weeks of live trading, assuming 1 MWh istraded at market index price for each settlement period,the trading algorithm generated a simulated profit of£2,858. The Sharpe ratio (SR) is a common measureused to evaluate the risk-adjusted performance of aninvestment. It is defined as the difference between thereturns of the investment Rp and the risk-free return

Rf (we assume a 3% annual risk-free rate of return),
divided by the standard deviation of the investmentreturns σ(p), i.e., SR = (Rp – Rf)/σ(p). For live trading,
we report a daily Sharpe ratio of 26.1, demonstrating anexceptionally high risk-adjusted return on investment.
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7. Discussion & Conclusions

We have used publicly available open-source data totrain a feedforward neural network to predict totaltransmission system demand in Great Britain’s electric-ity network (Section 4). This one hour ahead predictionis more accurate than the National Grid’s own forecast,and similar to the forecasting accuracy of Amira Tech-nologies, one of the industry’s best known commercialconsultancies. To guarantee that the prediction ac-curacy is robust and not affected by look-ahead bias,we generated live forecasts during two weeks in earlyMarch 2020, and demonstrated that accuracy is un-changed (Section 4.1).
We used our demand prediction as input to a secondfeedforward neural network to predict net imbalancevolume (NIV) in the electricity system (Section 5). Us-ing live testing, once again, we demonstrated that themodel has high prediction accuracy (Section 5.1). Sincethere are no metrics for direct comparative evaluationof the performance of our NIV prediction, we used ourprediction as a signal for a simple automated tradingstrategy (Section 6) which Buys a contract when pre-dicted NIV > 0 (i.e., when there is a predicted shortageof electricity), in the anticipation that prices will rise,and Sells a contract when predicted NIV < 0 (i.e., whenthere is a predicted excess of electricity), in the anticipa-tion that prices will fall. During live testing, the tradingalgorithm traded 599 times and was correct (i.e., madea profit) 431 times, giving a success rate of 72% (Sec-tion 6.1). This trading performance demonstrates thequality of the NIV prediction, and has the potentialto translate to significant and reliable risk-adjustedreturns, if traded in the real electricity markets.
The attentive reader may have observed that thelive prediction and trading periods we have used endedon 22 March 2020. On 23 March 2020, the UK wentinto “lockdown” due to the COVID-19 pandemic, withthe majority of the population (other than select “keyworkers”) forced to stay at home apart from one formof daily exercise. Across the country, schools, shops,factories, and offices were either closed or put under se-vere restrictions. As a result of this unprecedented andunforeseeable event, electricity demand in the Britishtransmission system was significantly impacted. Inparticular, transmission system demand was signif-icantly reduced during weekdays, making every daylook like a weekend (Wilson et al., 2020). For this rea-son, we ignore testing results from 23 March onwards.However, we have since retrained the neural networksfor demand prediction and NIV prediction during lock-down and results are consistent with those presentedhere; as are the results of trading.
In future, we aim to extend this work by optimisingthe model retraining period and exploring forecastingtime horizons greater than one hour ahead. We willalso explore alternative deep learning neural networkmodels, such as LSTM/RNN, which are designed for

time series data. Finally, we plan to explore moresophisticated algorithmic trading strategies, includingrisk hedging and portfolio optimisation across multipleforecast horizons.
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