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Abstract

Deep learning for depth estimation from monocular video feed is a common strategy to get rough 3D surface information
when an RGB-D camera is not present. Depth information is of importance in many domains such as object localization,
tracking, and scene reconstruction in robotics and industrial environments from multiple camera views. The convolutional
neural networks UpProjection, DORN, and Encoder/Decoder are evaluated on hybrid training datasets enriched by CGI data.
The highest accuracy results are derived from the UpProjection network with a relative deviation of 1.77% to 2.69% for
CAD-120 and SMV dataset respectively. It is shown, that incorporation of front and side view allows to increase the achievable
depth estimation for human body images. With the incorporation of a second view the error is reduced from 6.69% to 6.16%.
For the target domain of this depth estimation, the 3D human body reconstruction from aligned images in T-pose, plain
silhouette reconstruction generally leads to acceptable results. Nevertheless, additionally incorporating the rough depth
approximation in the future, concave areas at the chest, breast, and buttocks, currently not handled by the silhouette
reconstruction, can result in more realistic 3D body models by utilizing the deep learning outcome in a hybrid approach.
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1. Introduction

Depth estimation is the task of trying to recover the
3D geometry of a scene with only a 2D image available.
Depth data is used in a wide variety of applications from
autonomous driving to robotics. At present acquiring
this depth information often requires expensive equip-
ment like RGB-D cameras or lidar sensors. Being able
to estimate depth from images, which can be taken
with inexpensive cameras, would make using depth
information cheaper and easier and would also create
new possibilities. One of these could be to recover spa-

tial information from images of humans. This would
allow creating 3D models of people from images at a
higher accuracy compared to silhouette reconstruction
only. Data like this could have many uses from clothing
manufacturers quickly surveying the sizes of a target
group to online stores only presenting items to cus-
tomers that fit them or individuals who want to track
changes in their bodies.

When taking a 2D image of a 3D environment, a lot
of spatial information is lost. This raises the question
of whether using multiple images of a person from
different angles can help estimate depth more accu-
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rately. This article aims to answer this question and
also presents and analyzes three deep learning models
for the task of depth estimation.

2. State of the art

Laina et al. (2016) use a CNN to directly regress the
depth per pixel from an input image. Their network is
split into two parts: a feature extractor and an upsam-
pling network. The feature extractor is based on the
ResNet architecture (He et al., 2016) with the fully con-
nected classification layers removed. This transforms
a high-resolution image into a feature tensor which is
then upsampled to the desired resolution. Upsampling
is done by a series of unpooling and convolution steps.
With this method, they achieve an output resolution of
about half the input resolution.

Fu et al. (2018) use a feature extractor in a similar
way but produce a higher resolution feature map to
preserve spatial information. This feature map is sub-
sequently fed into multiple parallel blocks. The first
is a full image encoder which provides a global un-
derstanding of the input. The other blocks are dilated
convolutions with varying dilation rates. The output
of all parallel blocks is concatenated and upsampled to
the target resolution. The network is optimized with
ordinal regression which splits the depth range into
classes of different sizes. This improves the prediction
accuracy for low to medium depth values.

Jiao et al. (2018) introduce a split network that pre-
dicts a depth map and semantic labels at the same time.
They do this by using two networks that produce two
different outputs. The networks are connected with
their proposed Lateral Sharing Units. These aim to
exchange knowledge between both branches of the net-
work. Jiao et al. (2018) also introduce a depth aware
loss function. This loss function pays more attention
to distant regions of the depth map. Through this, the
resulting network more accurately predicts high depth
values.

Eigen and Fergus (2015) use a multi-scale deep net-
work to produce feature maps with different resolu-
tions. The first scale uses fully connected layers to
produce a feature map with low resolution. The use of
a fully connected layer allows the network to under-
stand the image at a global level. This output is passed
to the second part of the network. This part uses the
output from the previous layers and the original input
image to produce a depth map with higher resolutions.
The last layers again use the output from the previ-
ous part and the original image to further increase the
resolution and produce the final prediction.

This article aims to answer two research questions.
The first is how accurately can the geometry of a hu-
man be estimated from an image with deep learning
methods. To answer this, three different models are
trained and analyzed on multiple datasets. The sec-

ond question is whether using two images of the same
person from different angles can improve the accuracy
of the depth estimations. The same model is trained
on two datasets where one provides one image of the
subject and the other provides two images.

3. Materials and Methods
3.1. Deep Learning Models for Depth Estimation

The following models are implemented and trained on
three depth estimation datasets. The models are chosen
because they achieved state of the are results on other
depth estimation tasks.

3.1.1. UpProjection Network

This network is based on the UpProjection Network de-
veloped by Laina et al. (2016). It uses the Encoder/De-
coder strategy. The inputs are first downsampled to a
low resolution but a high number of channels by the
encoder. In the decoder part of the network the UpPro-
jection blocks (Laina et al., 2016) are used to increase
the resolution and reduce the number of channels with
every step.

The encoder takes as input a 3-channel image which
is then passed through a series of convolution and pool-
ing operations. The data is first downsampled and then
processed by several convolutions which are shown in
Figure 1.

After the final pooling step, the data is passed to the
decoder.

The decoder takes the low-resolution output of the
encoder and upsamples it to the final resolution. This
step is repeated five times, the same as the number
of pooling steps in the encoder. Therefore the output
resolution is equal to the input resolution. The number
of channels in the output needs to be one, which is
ensured by the last convolution in the decoder.

The upsampling in the decoder is done with the
UpProjection blocks introduced by Laina et al. (2016).
These blocks first use nearest neighbor upsampling
to double the resolution of the input. The result of
this step is processed by two convolutions as seen in
Figure 1. The same result is also passed to another
simultaneously executed convolution. The outputs of
both convolutions are then combined with an element-
wise addition. All convolutions up to this point have
the same number of filters as there are channels in
the input. The last convolution changes the number of
channels to be half of the number of channels in the
input. A ReLU is applied after the last convolution.

3.1.2. DORN Network

The DORN network was introduced by Fu et al. (2018)
and stands for deep ordinal regression network. The
name comes from the fact that they use ordinal regres-
sion which divides the depth values into classes and
uses the ordinal property of those classes to improve
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Figure 1. The architecture of the UpProjection Network.

the accuracy. However, to keep results comparable
between all three networks this technique is not used.

This network is split into an encoder and decoder
similar to the UpProjection network. The encoders ar-
chitecture is the same as in the first method. It uses
pooling and convolutions to extract features from the
input image. In this network, the image is not down-
sampled as often as in the first network which results
in a higher resolution of the feature map. This is done
to better retain the spatial information contained in the
input. When downsampling images to a low resolution
and a high number of channels a lot of the spatial infor-
mation is lost which makes it harder for the network
to reproduce the output with fine details. To address
this problem, the encoder applies pooling less often
and therefore produces a higher resolution result.

The output from the encoder is then processed by
five different parallel components as seen in Figure
2. All of those aim to capture a different aspect of the
input image. The first component is called Full Image
Encoder and was introduce by Fu et al. (2018). It uses
a fully connected layer to gather information about the
whole image at once.

The second parallel component of the network is a
standard convolution meant to capture local details of
the feature map to be able to get more details in the final
output. The last three parallel components are dilated
convolutions with varying rates of dilation. These are
used to capture details in a larger area than a normal
convolution could. Since all dilated convolutions have
different dilation factors, they can extract information
at different scales. The convolutions have a size of 3x 3
and dilation rates of 6, 12 and 18. After the outputs of
all parallel components have been computed they are
concatenated and passed to the decoder.

The decoder upsamples the combined outputs to the
resolution of the input image. This is done with a series
of unpooling and convolution operations as shown in
Figure 2.

Frelleretal. | 283

256x256x3 <A 256x256x64 Rl 128xaexed [<O-O- 128x128x128

64x64x256 [~ 64x64x128 J

32x32x

256x256x1

(& Upsampling Block

Hx W x 2Hx2W 2Hx2W
c xC xcf2

Full Image Encoder
HxWx 2Hx2W HxWx
Flefiecfedgs

<> Convolution

<> (Un)Pooling
Height, Width,
HxWxC Channels

4 Dilated Convolution
op Concatenation
[> Fullimage Encoder

Figure 2. The architecture of the DORN Network.

The network contains three upsampling blocks such
that the output and input resolutions are equal. The
output of the last upsampling block is passed to a con-
volution with one filter.

3.1.3. Encoder/Decoder

The Encoder/Decoder network uses a standard En-
coder/Decoder architecture but adds skip connections
to the network structure. These connections give the
decoder access to the feature maps produced in the
encoder. The upsampling and downsampling blocks
shown in Figure 3 can have different structures depend-
ing on what kind of pre-trained network is used.

The encoder uses a VGG16 network with pre-trained
weights to produce the feature map. This architec-
ture uses MaxPooling and multiple convolutions in its
downsampling block.

The downsampling blocks always produce an out-
put with twice the number of channels and half the
resolution of the input. The image is passed through
multiple downsampling blocks until the output has a
low resolution but a high number of channels.

The output of the encoder is passed to the decoder
for upsampling. The upsampling blocks in this network
use the same architecture as the ones in the DORN net-
work. The input is first processed with nearest neighbor
upsampling and then transformed with multiple con-
volutions. In every upsampling block, the resolution of
the input is doubled while the number of channels is
halved. This means at every step in the decoder there is
a corresponding step in the encoder that has the same
resolution and number of channels as the data at the
current step. This allows for the data of the encoder to
be added to the data in the decoder. This is done with
an element-wise addition after every upsampling block.
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Figure 3. The architecture of the Encoder/Decoder Network.

After combining the data, it is transformed with batch
normalization and three consecutive convolutions.

These steps of upsampling, combination and trans-
formation are repeated until the resolution of the de-
coder is equal to the input resolution. Finally, the data
is passed through one last convolution to reduce the
number of channels to one.

3.2. Datasets

Three datasets are used to analyze the performance of
the models under different circumstances. Figure 4
shows a sample from all datasets.

The first dataset is the Cornell Acitivity Dataset CAD-
120 (Koppula et al., 2013) which contains 120 videos
of people performing various every day actions like
making cereal or taking medicine. The dataset provides
amongst other things RGB and depth data taken with an
RGB-D camera. Due to the limitations of the technology
the depth data contains some invalid data which has
to be considered when training the model.

The second dataset is the Synthetic Mixed View
Dataset (SMV) which is a computer-generated dataset
specifically created for the task of training a neural
network for depth estimation. The samples consist of
an image of a person in a 3D scene and the associated

depth map. The images are generated by randomizing
certain variables. These variables include the position
and orientation of the person in the scene and the po-
sition of the camera. Since this dataset is artificially
generated it contains no invalid values or noise. This
is useful to test the models under ideal conditions.
The third dataset is the Synthetic Double View
Dataset (SDV) which is generated in the same man-
ner as the previous dataset. The difference is, that this
dataset contains two views of the subject one from the
front and one from the side and the depth data from
the front. This dataset is used to investigate whether
the second view can improve the prediction accuracy.
For all datasets, the depth values are normalized
such that all values are between 0 and 1. The validation
and test sets each consist of 10 % of the whole dataset.

4. Implementation Details

All models implemented using Python 3.7 and Tensor-
Flow 2.0. Most of the models use the functional Keras
API built into Tensorflow, additionaly some low-level
TensorFlow operations are used when necessary. Data
loading and preprocessing is done using the Tensor-
Flow Dataset API.

To speed up the training process all models use a
pretrained network as the encoder. The VGG16 net-
work is used with weights that are pretrained on the
ImageNet dataset. The standard VGG16 architecture
has a fully-connected classification layer at the end
which is not needed for this application so it is re-
moved. The weights of the pretrained network are not
updated during training which leaves only the weights
of the decoder as the trainable parameters of the net-
works. The UpProjection network has about 25 million
trainable parameters while the DORN and Encoder/De-
coder networks have 18 million and 60 million trainable
parameters respectively.

Listing 1 shows the implementation of the UpProjec-
tion block. The inputs variable is the input tensor that
is first upsampled using the UpSampling2D layer which
doubles the height and width using nearest neighbour
upsampling. The upsampled tensor is then transformed
with Conv2D layers such that the number of channels
is equal to the desired number out output channels as
specified by the variable channels_out. All convolutions
use 3 x 3 filters and the option padding=’same’ to en-
sure that the height and width of the tensor does not
change when applying the convolution. The results are
combined with the skip connection using the Python
+-operator which is implemented as element-wise ad-
dition in TensorFlow.

The implementation of the Full Image Encoder of
the DORN Network is shown in Listing 2. First, average
pooling is applied to the input which halves the width
and height of the tensor. Then the tensor in flattened
into a vector. This is necessary to use it as input for
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(d) SMV Depth
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(e) SDV RGB Front
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Figure 4. One sample from all of the datasets. Training and testing material uses RGB and depth data from the CAD-120 dataset (a-b), the SMV
dataset with RGB and depth respectively (c-d) as well as the SDV dataset providing views from the front and side besides ground truth depth

(e-g).

Listing 1. Implementation of the UpProjection block.

upsampled = layers.UpSampling2D()(inputs)

x = layers.Conv2D(channels_in,3,padding='same’ ,activation="relu’)(upsampled)
x = layers.Conv2D(channels_ out,3,padding="same’)(x)

skip_ connection = layers.Conv2D(channels_out,3,padding="same’ ) (upsampled)

x = X + skip_ connection

x = layers.Conv2D(channels_ out,3,padding='same’ )(x)

outputs = layers.ReLU()(x)

a dense layer. The dense layer outputs a tensor with
size 16 x 128 which is the batch size and the output
size of the dense layer. To use this tensor as the input
to a convolution it needs to be changed such that it
has a size of BATCH x WIDTH x HEIGHT x CHANNELS.
This is done by passing None to the indexer which adds
two unit axes to the tensor. It now has a shape of
16 x1x1x128 and can be transformed by the convolution.
After the convolution, the tensor is broadcast to a shape
of 16 x 32 x 32 x 32 so it is compatible with the results
of the other parallel components.

5. Results and Discussion
5.1. Experimental Setup

To compare the performance of all models, the same
training and evaluation process is used for all exper-
iments. All models are optimized with the RMSProp
optimizer with a decay rate p = 0.9 and § = 1077. The
learning rate e starts at a value of 1074. After every
epoch the learning rate is reduced by a factor of 1.25.
All models use a batch size of 16 and are trained for

12 epochs. The batch size and number of epochs are
mainly constrained by the available hardware. All net-
works are trained on a NVIDIA GeForce GTX 970 with 4
GB of GPU memory. Training for one epoch on the CAD-
120 dataset takes about one hour which is why training
was stopped after 12 epochs for all networks. The num-
ber of epochs was chosen because the at that point the
loss does not go down significantly anymore, so even
longer training would likely only result in marginal
improvements of the results.

The loss function that is utilized for training and
evaluation measures the relative average deviation from
the ground truth depth. This is done with

1 &y -9l
== AN AL 1
n*% Vi (1)

where y and j are the vectors of ground truth and
predicted values and n is the number of pixels. The
loss represents the average relative deviation from the
ground truth value. Since the CAD-120 Koppula et al.
(2013) dataset contains some invalid zero values, these
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Listing 2. Implementation of the Full Image Encoder.
x = layers.AveragePooling2D () (inputs)

layers.Flatten ()(x)
layers.Dense(128,activation="relu’ )(x)

[ I I
1]

tf.broadcast_to(x,(16,32,32,32))

are ignored when computing the loss, otherwise the
network learns to predict where the sensor can not
measure the depth which is not desired. All validation
and test sets are comprised of 10 % of the full dataset.

5.2. Metrics

All models are evaluated with several metrics to judge
their performance. For all metrics y is the ground truth
value, 9§ is the predicted value and n is the number of
pixels.

The first metric is the average relative deviation
(denoted rel) which is calculated with

1 <y -9l
rel = = =t I 2

The second metric is the average absolute deviation
(denoted abs) which is given by

n
1
abS:ﬁ*Zb}i—j}iL (3)
1=1

The third metric is the root mean squared error (de-
noted rms) that is calculated with

rms =

(4)

1 n
n* l;(yl‘ -9

The final metric is the accuracy within threshold (de-
noted &;) which is based on the definition by Cao et al.
(2017) but altered to be

n i =9l

1 1 if A<t

6t:n*z{ i< (5)
i |0 otherwise

This metric gives the percentage of pixels with a relative

deviation from the ground truth of less than t. For

example, 550, = 99% means that 99% of predictions

deviate less than 5% from the real value.

5.3. Results

To determine, which of the models achieves the best
performance, all of them are trained on the CAD-120
and SMV datasets. Tables 1 and 2 show the metrics for

layers.Conv2D(32,1,activation="relu’)(x[:,None,None,:])

Table 1. Evaluated metrics for the CAD-120 dataset.

Model | 8,50 S10% S50 | rel abs rms

UpProj | 99.14% 98.13% 94.15% | 0.0177 0.0066 0.0235
DORN | 99.14% 97.08% 90.25%/| 0.0250 0.0089 0.0322
EncDec | 96.64% 91.18%  76.44%| 0.0500 0.0182  0.0420

Table 2. Evaluated metrics for the SMV dataset.

Model | 8,50, 510% 850 | rel abs rms

UpProj | 99.20% 97.91% 92.39%| 0.0269 0.0059 0.0120
DORN 98.29% 95.15% 85.37% | 0.0315 0.0085 0.0161
EncDec | 95.01% 89.10% 70.35% | 0.0718 0.0156  0.0321

Table 3. Evaluated metrics for UpProjection network trained on the
SDV dataset.

View | 8550 510% 850 | rel abs rms
Single 97.01% 84.25% 57.90% | 0.0669 0.0208 0.0489
Double | 97.35% 85.70% 60.81% | 0.0616 0.0191  0.0412

all models on both datasets. The metrics show, that the
UpProjection network achieves the best performance
on both datasets with an average relative deviation
of 1.77% on the CAD-120 test set and 2.69% and the
SMV test set. Figure 5 shows a prediction and the
resulting 3D surface for all models on the CAD-120
dataset. The outputs show, that all models can predict
the larger differences in depth between the subject and
the background but only the UpProjection network can
capture the details of the person. While the prediction
of the DORN and Encoder/Decoder networks show a
flat surface at the torso the UpProjection network is
able to reconstruct the concave shape more accurately.

Since the UpProjection Network achieves the best
results it is used to investigate whether a second view of
the same subject can improve the results. The network
is trained twice on the SDV dataset. The first time
only the front view is used to establish a baseline and
the second time both views are used in training. The
results are listed in Table 3. The comparison shows
that the second view does improve the accuracy of the
prediction from a relative deviation of 6.69% to 6.16%.

6. Conclusion and Outlook

This research work evaluates the achievable accuracy
of relevant depth approximation networks for human
shape datasets. Results proof, that incorporation of
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Figure 5. Prediction and 3D surface of all models on the CAD-120 dataset.

front and side view allows increasing achievable ac-
curacy. The depth approximation of the human body
shows extremities such as legs and arms and the upper
body as a non-planar and elevated profile. Based on
this rough relative depth approximation, the accuracy
of 3D body reconstruction utilizing silhouette recon-
struction will be improved in the future. After aligning
the body and skeletal limbs to a reference T-pose model,
silhouette reconstruction leads to solid results close to
a convex body shape. Utilizing a rough depth approx-
imation, the concave areas at the chest, breast, and
the buttocks, which are currently not handled by the
silhouette reconstruction, can result in more realistic
3D body models by utilizing the deep learning outcome
in a hybrid approach.
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