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Abstract
Deep learning for depth estimation from monocular video feed is a common strategy to get rough 3D surface information
when an RGB-D camera is not present. Depth information is of importance in many domains such as object localization,
tracking, and scene reconstruction in robotics and industrial environments from multiple camera views. The convolutional
neural networks UpProjection, DORN, and Encoder/Decoder are evaluated on hybrid training datasets enriched by CGI data.
The highest accuracy results are derived from the UpProjection network with a relative deviation of 1.77% to 2.69% for
CAD-120 and SMV dataset respectively. It is shown, that incorporation of front and side view allows to increase the achievable
depth estimation for human body images. With the incorporation of a second view the error is reduced from 6.69% to 6.16%.
For the target domain of this depth estimation, the 3D human body reconstruction from aligned images in T-pose, plain
silhouette reconstruction generally leads to acceptable results. Nevertheless, additionally incorporating the rough depth
approximation in the future, concave areas at the chest, breast, and buttocks, currently not handled by the silhouette
reconstruction, can result in more realistic 3D body models by utilizing the deep learning outcome in a hybrid approach.
Keywords: Depth Estimation; Deep Learning; Convolutional Neural Networks; Human Body 3D Reconstruction

1. Introduction

Depth estimation is the task of trying to recover the3D geometry of a scene with only a 2D image available.Depth data is used in a wide variety of applications fromautonomous driving to robotics. At present acquiringthis depth information often requires expensive equip-ment like RGB-D cameras or lidar sensors. Being ableto estimate depth from images, which can be takenwith inexpensive cameras, would make using depthinformation cheaper and easier and would also createnew possibilities. One of these could be to recover spa-

tial information from images of humans. This wouldallow creating 3D models of people from images at ahigher accuracy compared to silhouette reconstructiononly. Data like this could have many uses from clothingmanufacturers quickly surveying the sizes of a targetgroup to online stores only presenting items to cus-tomers that fit them or individuals who want to trackchanges in their bodies.
When taking a 2D image of a 3D environment, a lotof spatial information is lost. This raises the questionof whether using multiple images of a person fromdifferent angles can help estimate depth more accu-
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rately. This article aims to answer this question andalso presents and analyzes three deep learning modelsfor the task of depth estimation.

2. State of the art

Laina et al. (2016) use a CNN to directly regress thedepth per pixel from an input image. Their network issplit into two parts: a feature extractor and an upsam-pling network. The feature extractor is based on theResNet architecture (He et al., 2016) with the fully con-nected classification layers removed. This transformsa high-resolution image into a feature tensor which isthen upsampled to the desired resolution. Upsamplingis done by a series of unpooling and convolution steps.With this method, they achieve an output resolution ofabout half the input resolution.
Fu et al. (2018) use a feature extractor in a similarway but produce a higher resolution feature map topreserve spatial information. This feature map is sub-sequently fed into multiple parallel blocks. The firstis a full image encoder which provides a global un-derstanding of the input. The other blocks are dilatedconvolutions with varying dilation rates. The outputof all parallel blocks is concatenated and upsampled tothe target resolution. The network is optimized withordinal regression which splits the depth range intoclasses of different sizes. This improves the predictionaccuracy for low to medium depth values.
Jiao et al. (2018) introduce a split network that pre-dicts a depth map and semantic labels at the same time.They do this by using two networks that produce twodifferent outputs. The networks are connected withtheir proposed Lateral Sharing Units. These aim toexchange knowledge between both branches of the net-work. Jiao et al. (2018) also introduce a depth awareloss function. This loss function pays more attentionto distant regions of the depth map. Through this, theresulting network more accurately predicts high depthvalues.
Eigen and Fergus (2015) use a multi-scale deep net-work to produce feature maps with different resolu-tions. The first scale uses fully connected layers toproduce a feature map with low resolution. The use ofa fully connected layer allows the network to under-stand the image at a global level. This output is passedto the second part of the network. This part uses theoutput from the previous layers and the original inputimage to produce a depth map with higher resolutions.The last layers again use the output from the previ-ous part and the original image to further increase theresolution and produce the final prediction.
This article aims to answer two research questions.The first is how accurately can the geometry of a hu-man be estimated from an image with deep learningmethods. To answer this, three different models aretrained and analyzed on multiple datasets. The sec-

ond question is whether using two images of the sameperson from different angles can improve the accuracyof the depth estimations. The same model is trainedon two datasets where one provides one image of thesubject and the other provides two images.

3. Materials and Methods

3.1. Deep Learning Models for Depth Estimation

The following models are implemented and trained onthree depth estimation datasets. The models are chosenbecause they achieved state of the are results on otherdepth estimation tasks.
3.1.1. UpProjection NetworkThis network is based on the UpProjection Network de-veloped by Laina et al. (2016). It uses the Encoder/De-coder strategy. The inputs are first downsampled to alow resolution but a high number of channels by theencoder. In the decoder part of the network the UpPro-jection blocks (Laina et al., 2016) are used to increasethe resolution and reduce the number of channels withevery step.The encoder takes as input a 3-channel image whichis then passed through a series of convolution and pool-ing operations. The data is first downsampled and thenprocessed by several convolutions which are shown inFigure 1.After the final pooling step, the data is passed to thedecoder.The decoder takes the low-resolution output of theencoder and upsamples it to the final resolution. Thisstep is repeated five times, the same as the numberof pooling steps in the encoder. Therefore the outputresolution is equal to the input resolution. The numberof channels in the output needs to be one, which isensured by the last convolution in the decoder.The upsampling in the decoder is done with theUpProjection blocks introduced by Laina et al. (2016).These blocks first use nearest neighbor upsamplingto double the resolution of the input. The result ofthis step is processed by two convolutions as seen inFigure 1. The same result is also passed to anothersimultaneously executed convolution. The outputs ofboth convolutions are then combined with an element-wise addition. All convolutions up to this point havethe same number of filters as there are channels inthe input. The last convolution changes the number ofchannels to be half of the number of channels in theinput. A ReLU is applied after the last convolution.
3.1.2. DORN NetworkThe DORN network was introduced by Fu et al. (2018)and stands for deep ordinal regression network. Thename comes from the fact that they use ordinal regres-sion which divides the depth values into classes anduses the ordinal property of those classes to improve
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Figure 1. The architecture of the UpProjection Network.

the accuracy. However, to keep results comparablebetween all three networks this technique is not used.
This network is split into an encoder and decodersimilar to the UpProjection network. The encoders ar-chitecture is the same as in the first method. It usespooling and convolutions to extract features from theinput image. In this network, the image is not down-sampled as often as in the first network which resultsin a higher resolution of the feature map. This is doneto better retain the spatial information contained in theinput. When downsampling images to a low resolutionand a high number of channels a lot of the spatial infor-mation is lost which makes it harder for the networkto reproduce the output with fine details. To addressthis problem, the encoder applies pooling less oftenand therefore produces a higher resolution result.
The output from the encoder is then processed byfive different parallel components as seen in Figure2. All of those aim to capture a different aspect of theinput image. The first component is called Full ImageEncoder and was introduce by Fu et al. (2018). It usesa fully connected layer to gather information about thewhole image at once.
The second parallel component of the network is astandard convolution meant to capture local details ofthe feature map to be able to get more details in the finaloutput. The last three parallel components are dilatedconvolutions with varying rates of dilation. These areused to capture details in a larger area than a normalconvolution could. Since all dilated convolutions havedifferent dilation factors, they can extract informationat different scales. The convolutions have a size of 3×3and dilation rates of 6, 12 and 18. After the outputs ofall parallel components have been computed they areconcatenated and passed to the decoder.
The decoder upsamples the combined outputs to theresolution of the input image. This is done with a seriesof unpooling and convolution operations as shown inFigure 2.

Figure 2. The architecture of the DORN Network.

The network contains three upsampling blocks suchthat the output and input resolutions are equal. Theoutput of the last upsampling block is passed to a con-volution with one filter.
3.1.3. Encoder/Decoder
The Encoder/Decoder network uses a standard En-coder/Decoder architecture but adds skip connectionsto the network structure. These connections give thedecoder access to the feature maps produced in theencoder. The upsampling and downsampling blocksshown in Figure 3 can have different structures depend-ing on what kind of pre-trained network is used.

The encoder uses a VGG16 network with pre-trainedweights to produce the feature map. This architec-ture uses MaxPooling and multiple convolutions in itsdownsampling block.
The downsampling blocks always produce an out-put with twice the number of channels and half theresolution of the input. The image is passed throughmultiple downsampling blocks until the output has alow resolution but a high number of channels.
The output of the encoder is passed to the decoderfor upsampling. The upsampling blocks in this networkuse the same architecture as the ones in the DORN net-work. The input is first processed with nearest neighborupsampling and then transformed with multiple con-volutions. In every upsampling block, the resolution ofthe input is doubled while the number of channels ishalved. This means at every step in the decoder there isa corresponding step in the encoder that has the sameresolution and number of channels as the data at thecurrent step. This allows for the data of the encoder tobe added to the data in the decoder. This is done withan element-wise addition after every upsampling block.
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Figure 3. The architecture of the Encoder/Decoder Network.

After combining the data, it is transformed with batchnormalization and three consecutive convolutions.
These steps of upsampling, combination and trans-formation are repeated until the resolution of the de-coder is equal to the input resolution. Finally, the datais passed through one last convolution to reduce thenumber of channels to one.

3.2. Datasets

Three datasets are used to analyze the performance ofthe models under different circumstances. Figure 4shows a sample from all datasets.
The first dataset is the Cornell Acitivity Dataset CAD-120 (Koppula et al., 2013) which contains 120 videosof people performing various every day actions likemaking cereal or taking medicine. The dataset providesamongst other things RGB and depth data taken with anRGB-D camera. Due to the limitations of the technologythe depth data contains some invalid data which hasto be considered when training the model.
The second dataset is the Synthetic Mixed ViewDataset (SMV) which is a computer-generated datasetspecifically created for the task of training a neuralnetwork for depth estimation. The samples consist ofan image of a person in a 3D scene and the associated

depth map. The images are generated by randomizingcertain variables. These variables include the positionand orientation of the person in the scene and the po-sition of the camera. Since this dataset is artificiallygenerated it contains no invalid values or noise. Thisis useful to test the models under ideal conditions.
The third dataset is the Synthetic Double ViewDataset (SDV) which is generated in the same man-ner as the previous dataset. The difference is, that thisdataset contains two views of the subject one from thefront and one from the side and the depth data fromthe front. This dataset is used to investigate whetherthe second view can improve the prediction accuracy.
For all datasets, the depth values are normalizedsuch that all values are between 0 and 1. The validationand test sets each consist of 10 % of the whole dataset.

4. Implementation Details

All models implemented using Python 3.7 and Tensor-Flow 2.0. Most of the models use the functional KerasAPI built into Tensorflow, additionaly some low-levelTensorFlow operations are used when necessary. Dataloading and preprocessing is done using the Tensor-Flow Dataset API.
To speed up the training process all models use apretrained network as the encoder. The VGG16 net-work is used with weights that are pretrained on theImageNet dataset. The standard VGG16 architecturehas a fully-connected classification layer at the endwhich is not needed for this application so it is re-moved. The weights of the pretrained network are notupdated during training which leaves only the weightsof the decoder as the trainable parameters of the net-works. The UpProjection network has about 25 milliontrainable parameters while the DORN and Encoder/De-coder networks have 18 million and 60 million trainableparameters respectively.
Listing 1 shows the implementation of the UpProjec-tion block. The inputs variable is the input tensor thatis first upsampled using the UpSampling2D layer whichdoubles the height and width using nearest neighbourupsampling. The upsampled tensor is then transformedwith Conv2D layers such that the number of channelsis equal to the desired number out output channels asspecified by the variable channels_out. All convolutionsuse 3 × 3 filters and the option padding=’same’ to en-sure that the height and width of the tensor does notchange when applying the convolution. The results arecombined with the skip connection using the Python

+-operator which is implemented as element-wise ad-dition in TensorFlow.
The implementation of the Full Image Encoder ofthe DORN Network is shown in Listing 2. First, averagepooling is applied to the input which halves the widthand height of the tensor. Then the tensor in flattenedinto a vector. This is necessary to use it as input for
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(a) CAD-120 RGB (b) CAD-120 Depth (c) SMV RGB (d) SMV Depth

(e) SDV RGB Front (f) SDV RGB Side (g) SDV RGB Depth
Figure 4. One sample from all of the datasets. Training and testing material uses RGB and depth data from the CAD-120 dataset (a-b), the SMVdataset with RGB and depth respectively (c-d) as well as the SDV dataset providing views from the front and side besides ground truth depth(e-g).

Listing 1. Implementation of the UpProjection block.
upsampled = layers .UpSampling2D()( inputs )x = layers .Conv2D(channels_in ,3 ,padding=’same’ , activation=’ relu ’ )(upsampled)x = layers .Conv2D(channels_out ,3 ,padding=’same’ )(x)
skip_connection = layers .Conv2D(channels_out ,3 ,padding=’same’ )(upsampled)x = x + skip_connectionx = layers .Conv2D(channels_out ,3 ,padding=’same’ )(x)outputs = layers .ReLU()(x)

a dense layer. The dense layer outputs a tensor withsize 16 × 128 which is the batch size and the outputsize of the dense layer. To use this tensor as the inputto a convolution it needs to be changed such that ithas a size of BATCH × WIDTH × HEIGHT × CHANNELS.This is done by passing None to the indexer which addstwo unit axes to the tensor. It now has a shape of16×1×1×128 and can be transformed by the convolution.After the convolution, the tensor is broadcast to a shapeof 16 × 32 × 32 × 32 so it is compatible with the resultsof the other parallel components.

5. Results and Discussion

5.1. Experimental Setup

To compare the performance of all models, the sametraining and evaluation process is used for all exper-iments. All models are optimized with the RMSPropoptimizer with a decay rate ρ = 0.9 and δ = 10–7. Thelearning rate ε starts at a value of 10–4. After everyepoch the learning rate is reduced by a factor of 1.25.All models use a batch size of 16 and are trained for

12 epochs. The batch size and number of epochs aremainly constrained by the available hardware. All net-works are trained on a NVIDIA GeForce GTX 970 with 4GB of GPU memory. Training for one epoch on the CAD-120 dataset takes about one hour which is why trainingwas stopped after 12 epochs for all networks. The num-ber of epochs was chosen because the at that point theloss does not go down significantly anymore, so evenlonger training would likely only result in marginalimprovements of the results.
The loss function that is utilized for training andevaluation measures the relative average deviation fromthe ground truth depth. This is done with

l = 1
n ∗

n∑
i=1

|yi – ŷi|
yi

(1)

where y and ŷ are the vectors of ground truth andpredicted values and n is the number of pixels. Theloss represents the average relative deviation from theground truth value. Since the CAD-120 Koppula et al.(2013) dataset contains some invalid zero values, these
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Listing 2. Implementation of the Full Image Encoder.
x = layers .AveragePooling2D()( inputs )x = layers . Flatten ()(x)x = layers .Dense(128 , activation=’ relu ’ )(x)x = layers .Conv2D(32 ,1 , activation=’ relu ’ )(x[ : ,None,None, : ] )x = tf . broadcast_to(x,(16 ,32 ,32 ,32))

are ignored when computing the loss, otherwise thenetwork learns to predict where the sensor can notmeasure the depth which is not desired. All validationand test sets are comprised of 10 % of the full dataset.
5.2. Metrics

All models are evaluated with several metrics to judgetheir performance. For all metrics y is the ground truthvalue, ŷ is the predicted value and n is the number ofpixels.
The first metric is the average relative deviation(denoted rel) which is calculated with

rel = 1
n ∗

n∑
i=1

|yi – ŷi|
yi

. (2)

The second metric is the average absolute deviation(denoted abs) which is given by

abs = 1
n ∗

n∑
i=1

|yi – ŷi| . (3)

The third metric is the root mean squared error (de-noted rms) that is calculated with

rms =
√√√√ 1
n ∗

n∑
i=1

(yi – ŷi)2 . (4)

The final metric is the accuracy within threshold (de-noted δt) which is based on the definition by Cao et al.(2017) but altered to be

δt = 1
n ∗

n∑
i=1

{1 if |yi–ŷi|
yi < t

0 otherwise . (5)

This metric gives the percentage of pixels with a relativedeviation from the ground truth of less than t. Forexample, δ5% = 99% means that 99% of predictionsdeviate less than 5% from the real value.
5.3. Results

To determine, which of the models achieves the bestperformance, all of them are trained on the CAD-120and SMV datasets. Tables 1 and 2 show the metrics for

Table 1. Evaluated metrics for the CAD-120 dataset.
Model δ25% δ10% δ5% rel abs rms
UpProj 99.14% 98.13% 94.15% 0.0177 0.0066 0.0235
DORN 99.14% 97.08% 90.25% 0.0250 0.0089 0.0322
EncDec 96.64% 91.18% 76.44% 0.0500 0.0182 0.0420

Table 2. Evaluated metrics for the SMV dataset.
Model δ25% δ10% δ5% rel abs rms
UpProj 99.20% 97.91% 92.39% 0.0269 0.0059 0.0120
DORN 98.29% 95.15% 85.37% 0.0315 0.0085 0.0161
EncDec 95.01% 89.10% 70.35% 0.0718 0.0156 0.0321

Table 3. Evaluated metrics for UpProjection network trained on theSDV dataset.
View δ25% δ10% δ5% rel abs rms
Single 97.01% 84.25% 57.90% 0.0669 0.0208 0.0489
Double 97.35% 85.70% 60.81% 0.0616 0.0191 0.0412

all models on both datasets. The metrics show, that theUpProjection network achieves the best performanceon both datasets with an average relative deviationof 1.77% on the CAD-120 test set and 2.69% and theSMV test set. Figure 5 shows a prediction and theresulting 3D surface for all models on the CAD-120dataset. The outputs show, that all models can predictthe larger differences in depth between the subject andthe background but only the UpProjection network cancapture the details of the person. While the predictionof the DORN and Encoder/Decoder networks show aflat surface at the torso the UpProjection network isable to reconstruct the concave shape more accurately.
Since the UpProjection Network achieves the bestresults it is used to investigate whether a second view ofthe same subject can improve the results. The networkis trained twice on the SDV dataset. The first timeonly the front view is used to establish a baseline andthe second time both views are used in training. Theresults are listed in Table 3. The comparison showsthat the second view does improve the accuracy of theprediction from a relative deviation of 6.69% to 6.16%.

6. Conclusion and Outlook

This research work evaluates the achievable accuracyof relevant depth approximation networks for humanshape datasets. Results proof, that incorporation of
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(a) Input (b) Ground Truth (c) UpProjection (d) UpProjection

(e) DORN (f) DORN (g) Encoder/Decoder (h) Encoder/Decoder
Figure 5. Prediction and 3D surface of all models on the CAD-120 dataset.

front and side view allows increasing achievable ac-curacy. The depth approximation of the human bodyshows extremities such as legs and arms and the upperbody as a non-planar and elevated profile. Based onthis rough relative depth approximation, the accuracyof 3D body reconstruction utilizing silhouette recon-struction will be improved in the future. After aligningthe body and skeletal limbs to a reference T-pose model,silhouette reconstruction leads to solid results close toa convex body shape. Utilizing a rough depth approx-imation, the concave areas at the chest, breast, andthe buttocks, which are currently not handled by thesilhouette reconstruction, can result in more realistic3D body models by utilizing the deep learning outcomein a hybrid approach.
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