

© 2020 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

254

32nd European Modeling & Simulation Symposium
17th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0029 ISBN 978-88-85741-44-7 © 2020 The Authors.
DOI: 10.46354/i3m.2020.emss.036

Which Trading Agent is Best? Using a Threaded Parallel
Simulation of a Financial Market Changes the Pecking-
Order

Michael Rollins and Dave Cliff*

Department of Computer Science, The University of Bristol, Woodland Road, Bristol, BS8 1UB, UK

*Corresponding author. Email address: csdtc@bristol.ac.uk

Abstract
This paper presents novel results, generated from a new simulation model of a contemporary financial market, that cast serious
doubt on the previously widely accepted view of the relative performance of various well-known public-domain automated-
trading algorithms. Put simply, we show here that if you use a more realistic market simulator, then trading algorithms
previously thought to be the best-performing are shown to be not as good as people think they are, and some algorithms
previously thought to be poor performers can be seen to do surprisingly well. Automated trading is now entirely commonplace in
most of the world's major financial markets: adaptive algorithmic trading systems operate largely autonomously, interacting
with other traders (either other automated systems, or humans) via an electronic exchange platform. Various public-domain
trading algorithms have been proposed over the past 25 years in a kind of arms-race, where each new trading algorithm was
compared to the previous best, thereby establishing a "pecking order", i.e. a partially-ordered dominance hierarchy from best to
worst of the various trading algorithms. Many of these algorithms were developed, tested, and evaluated using simple minimal
simulations of financial markets that only very weakly approximated the fact that real markets involve many different trading
systems operating asynchronously and in parallel. In this paper we use BSE, a long-established public-domain market simulator,
to run a set of experiments generating benchmark results from several well-known trading algorithms. BSE incorporates a very
simple time-sliced approach to simulating parallelism, which has obvious known weaknesses. We then alter and extend BSE to
make it threaded, so that different trader algorithms operate asynchronously and in parallel: we call this simulator Threaded-BSE
(TBSE). We then re-run the trader experiments on TBSE and compare the TBSE results to our earlier benchmark results from BSE.
Our comparison shows that the dominance hierarchy in our more realistic experiments is different from the one given by the
original simple simulator. We conclude that simulated parallelism matters a lot, and that earlier results from simple simulations
comparing different trader algorithms are no longer to be entirely trusted.

Keywords: Financial Markets; Market Simulators; Simulation Methods; Trading Agents; Experimental Economics.

1. Introduction

This paper presents new evidence that key results
previously published in the literature on automated
trading systems may be artefacts of the simplistic
modelling and simulation methods used to generate
them. In particular, we have taken a long-established

public-domain simulator of a contemporary electronic
financial market, called BSE, and used it to generate a
set of benchmark results from four very widely-used
public-domain automated-trading algorithms, known
as ZIC, ZIP, GDX, and AA (we explain these in more
detail, later). These initial BSE benchmark results
confirm the previously-published dominance-
hierarchy, or "pecking order", where AA beats GDX,

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:csdtc@bristol.ac.uk

Rollins & Cliff | 255

GDX beats ZIP, and ZIP beats ZIC, which we write in
abbreviated form as AA>GDX>ZIP>ZIC. The BSE
simulator is deliberately simple in its modelling of
time, and uses only a single thread, a single computer
process, which it divides among the various simulated
automated traders in such a way that the response-
time, the time for an automated trader to compute an
answer, is not simulated and hence very complicated
trading systems that would take a lot of "thinking
time" to compute a response to some change in the
market are treated as if they take exactly the same time
as the very fastest of trading algorithms. This is clearly
unrealistic, yet BSE's approach to simulating time is
not uncommon.

We then constructed a modified version of the BSE
simulator, which is threaded, i.e. uses multiple
concurrently running computer processes ("threads")
to model the parallel and asynchronous nature of real
financial markets, where multiple traders operate
independently, in parallel and asynchronously: we call
this simulator Threaded-BSE (TBSE). We then re-run
our experiments on TBSE and find, as we show here for
the first time, that the dominance hierarchy in TBSE is
very different from that found in BSE: from our current
results it seems that when operating in parallel the
dominance hierarchy is instead ZIP>AA>ZIC>GDX.
This is a novel result and is the key contribution of this
paper. That is, we demonstrate here that previous use
of simplistic simulation methodologies has produced
sets of results which, although widely cited, can now no
longer be trusted.

Section 2 of this paper gives a summary of the
background to this work, and is taken largely verbatim
from a position paper published by one of us at
EMSS2019 (Cliff, 2019): our new results presented here
can be read as an empirical illustration of the
arguments made in that EMSS2019 paper. Section 3
gives more details of our methods; Section 4 shows key
results; and Section 5 offers a discussion of the results,
and of possible avenues of further work. TBSE is fully
documented in (Rollins, 2020), including details of the
TBSE source-code repository on GitHub.

2. Background

2.1. Traders, Markets, and Experimental Economics

The 2002 Nobel Prize in Economics was awarded to
Vernon Smith, in recognition of Smith’s work in
establishing and thereafter growing the field of
Experimental Economics (abbreviated hereafter to
“EE”). Smith showed that the microeconomic behavior
of human traders interacting within the rules of some
specified market, known technically as an auction
mechanism, could be studied empirically, under
controlled and repeatable laboratory conditions, rather
than in the noisy messy confusing circumstances of
real-world markets. The minimal laboratory studies
could act as useful proxies for studying real-world
markets of any type, but one particular auction

mechanism has received the majority of attention: the
Continuous Double Auction (CDA), in which any buyer
can announce a bid-price at any time and any seller can
announce an offer-price at any time, and in which at
any time any trader in the market can accept an offer or
bid from a counterparty, and thereby engage in a
transaction. The CDA is the basis of major financial
markets worldwide, and tens of trillions of dollars flow
through CDA markets every year.

Each trader in one of Smith's experimental CDA
markets would be assigned a private valuation, a secret
limit price: for a buyer this was the price above which he
or she should not pay when purchasing an item; for a
seller this was the price below which he or she should
not sell an item. These limit-price assignments model
the client orders executed by sales traders in real
financial markets; we’ll refer to them just as
assignments in the rest of this paper. Traders in EE
experiments from Smith's onwards are often
motivated by payment of some form of real-world
reward that is proportional to the amount of "profit"
that they accrue from their transactions: the profit is
the absolute value of the difference between the limit
price specified when a unit is assigned to a trader, and
the actual transaction price for that unit.

The limit prices in the assignments defined the
market's supply and demand schedules, which are
commonly illustrated in economics texts as supply and
demand curves on a 2D graph with quantity on the
horizontal axis and price on the vertical axis: where the
two curves intersect is the market's theoretical
competitive equilibrium point: indicating the
equilibrium price (denoted here by P0). A fundamental
observation from microeconomics (the study of
markets and prices) is that competition among buyers
pushes prices up, and competition among sellers
pushers prices down, and these two opposing
influences on prices balance out at the competitive
equilibrium point; a market in which transaction prices
rapidly and stably settles to the P0 value is often viewed
by economists as efficient (for a specific definition of
efficiency) whereas a market in which transactions
consistently occur at off-equilibrium prices is usually
thought of as inefficient: for instance, if transaction
prices are consistently above P0 then it's likely that
buyers are being ripped off. By varying the prices in the
traders' assignments in Smith's experiments, the
nature of the market's supply and demand curves could
be altered, and the effects of those variations on the
speed and stability of the market's convergence toward
an equilibrium point could be measured.

Smith’s initial set of experiments were run in the
late 1950’s, and were described in his first paper on EE,
published in the prestigious Journal of Political Economy
(JPE) in 1962. The experiment methods laid out in that
1962 paper would subsequently come to dominate the
methodology of researchers working to build adaptive
autonomous automated trading agents by combining
tools and techniques from Artificial Intelligence (AI)

256 | 32nd European Modeling & Simulation Symposium, EMSS 2020

and Machine Learning (ML). This strand of AI/ML
research converged toward a common aim: specifying
an artificial agent, an autonomous adaptive trading
strategy, that could automatically tune its behavior to
different market environments, and that could reliably
beat all other known automated trading strategies,
thereby taking the crown of being the current best
trading strategy known in the public domain, i.e., the
“dominant strategy”. Over the past 20 years the
dominant strategy crown has passed from one
algorithm to another and until very recently
Vytelingum’s (2006, 2008) "AA" strategy, was widely
believed to be the dominant strategy, but recent results
using contemporary large-scale computational
simulation techniques indicate that it does not always
perform so well as was previously believed, as
discussed in the next section: Section 2.2 briefly
reviews key publications leading to the development of
AA, and the recent research that called its dominance
into question.

2.2. A Brief History of Trading Agents

If our story starts with Smith’s 1962 JPE paper, then
the next major step came 30 years later, with a
surprising result published in the JPE by Gode & Sunder
(1993): this popularized a minimally simple automated
trading algorithm now commonly referred to as ZIC. A
few years later two closely related research papers were
published independently and at roughly the same time,
each written without knowledge of the other: the first
was a Hewlett-Packard Labs technical report by Cliff
(1997) describing the adaptive AI/ML trading-agent
strategy known as the ZIP algorithm; the second
summarized the PhD thesis work of Gjerstad, in a paper
co-authored with his PhD advisor (Gjerstad & Dickhaut
1998), describing an adaptive trading algorithm now
widely known simply as GD. After graduating his PhD,
Gjerstad worked at IBM’s TJ Watson Labs where he
helped set up an EE laboratory that his IBM colleagues
used in a study that generated world-wide media
coverage when its results were published by Das et al. at
the prestigious International Joint Conference on AI
(IJCAI) in 2001. This paper presented results from
studies exploring the behavior of human traders
interacting with GD and ZIP robot traders, and
demonstrated that both GD and ZIP reliably
outperformed human traders. A follow-on 2001 paper
by Tesauro & Das (two co-authors of the IBM IJCAI
paper) described a more extensively Modified GD (MGD)
strategy, and later Tesauro & Bredin (2002) described
the GD eXtended (GDX) strategy. Both MGD and GDX
were each claimed to be the strongest-known public-
domain trading strategies at the times of their
publication.

Subsequently, Vytelingum’s 2006 thesis introduced
the Adaptive Aggressive (AA) strategy which, in a major
journal paper (Vytelingum et al., 2008), and in later
conference papers (De Luca & Cliff 2012a, 2012b), was
shown to be dominant over ZIP, GDX, and human
traders. Thus far then, ZIP had been beaten by GDX, and

AA had beaten GDX, and hence AA held the title. In
shorthand, we had AA>GDX>ZIP.

In all of the studies discussed thus far, typically two
or three different types of trading algorithm would be
compared against each other on the basis of how much
profit (or surplus, to use the economists' technical
term) they extract from the market, so Algorithm A was
said to dominate or outperform or beat or be stronger than
Algorithm B if, over some number of market sessions,
traders running A made more money than traders
running B. Methods of comparison varied. Sometimes
a particular market set-up (i.e., a specific number of
sellers, number of buyers, and their associated limit-
price assignments specifying the market's supply and
demand schedules) would be homogeneously
populated with traders of type A, and then the same
market would be re-run with all traders instead being
type B, and an A/B comparison of profitability in the
absence of any other trading algorithms could then be
made. In other comparisons, for a market with B buyers
and S sellers, B/2 of the buyers would use Algorithm A
and the remaining B/2 buyers would run Algorithm B,
with the seller population being similarly split, and the
A/B comparison then showed profitability in the
presence of the other trading algorithm. A/B tests
involving 50:50 splits, as just described, were
commonly used to establish the dominance
relationship between A and B.

Comparatively recently, Vach (2015) presented
results from experiments with the OpEx market
simulator (De Luca, 2015), in which AA, GDX, and ZIP
were set to compete against one another, and in which
the dominance of AA was questioned: Vach’s results
indicate that whether AA dominates or not can be
dependent on the ratio of AA:GDX:ZIP in the
experiment: for some ratios, Vach found AA to
dominate; for other ratios, it was GDX. Vach studied
only a very small sample from the space of possible
ratios, but his results prompted Cliff (2019) to use the
public-domain "BSE" financial exchange simulator
(BSE, 2012) to exhaustively run through a wide range of
differing ratios of four trading strategies (AA, ZIC, ZIP,
and the minimally simple SHVR built into BSE), doing a
brute-force search for situations in which AA is
outperformed by the other strategies. Cliff reported on
results from over 3.4 million individual simulations of
market sessions, which indicated that Vach’s
observation was correct: whether AA dominates does
indeed depend on how many other AA traders are in the
market, and what mix of what other strategies are also
present. Depending on the ratio, AA could be
outperformed by ZIP and by SHVR. Subsequent
research by Snashall (2019) employed the same
exhaustive testing method, using a supercomputer to
run more than one million market simulations (all in
BSE) to exhaustively test AA against IBM's GDX
strategy: this again revealed that AA does not always
dominate GDX: see Snashall & Cliff (2019) for
discussion.

Rollins & Cliff | 257

In this paper we will talk about counting the number
of "wins" when comparing an A algorithm to a B
algorithm: in the experiments reported in Section 4, we
create a specific market set-up, and then run some
number n of independent and identically distributed
markets sessions with some ratio A:B of the two
strategies in the buyers, and the same A:B ratio in the
sellers. In any one of those sessions, if the average
profit per trader (APPT) of type A traders is higher than
the APPT for traders of type B, then we count that
session as a "win" for A; and vice versa as a win for B. In
the experiments reported in Section 4, assignments to
buy or sell are issued to the traders periodically, with all
traders being updated at the same time, and the limit
prices in the assignments came from symmetric supply
and demand curves where the equilibrium price was
varied dynamically using the sinusoidal offset function
illustrated in Fig.4.8 of the BSE user guide (BSE, 2012).

Our experiments reported here are motivated by this
progression of past research. In particular, we noted
that Vach's results which first revealed that the ratio of
different trading algorithms could affect the
dominance hierarchy came from experiments he ran
using De Luca's (2015) OpEx market simulator, which
is a true parallel asynchronous distributed system:
OpEx involves a number of individual trader computers
(discrete laptop PCs) communicating over a local-area
network with a central exchange-server (a desktop PC).
But many of the other results that we have just
summarized came from financial-market simulators
that only very roughly approximated parallel
execution: Cliff (1997) published C-language source-
code for the discrete-event simulator he developed to
test and compare ZIC with ZIP; and the BSE simulator
(BSE, 2012) also uses a very simple time-sliced
approach where, if any one trader is called upon to issue
a response to a change in the market, it always does so
within exactly one simulated time-slice within the
simulation, regardless of how much computation it has
to execute to generate that response. Snashall & Cliff
(2019) noted that the actual reaction-times of the
various trading algorithms varied quite widely, and in a
true parallel simulation the slower traders might be
expected to do much less well than when they are
evaluated or compared in a temporally simplistic
simulation. So, possibly Vach's results were as much to
do with his use of OpEx as his varying of the ratios of
trader-algorithms. That is what we set out to explore in
this paper. In order to do that, we developed TBSE, a
new threaded (parallel) version of the BSE financial-
market simulator, discussed in the next section.

3. TBSE: Threaded BSE

Much of the functionality of TBSE was directly
borrowed from the original BSE simulator. The key
changes affect the way each market session operates. In
BSE, each market session is executed on a single thread
in which a core loop executes repeatedly until the
session end-time is passed. Within this loop a single
trader in the market's population of traders is selected

at random, and that trader is polled to see if it wants to
issue an order: this is achieved by calling that trader's
getorder function. If the trader does issue an order,
that order is then processed by the exchange and all
traders in the population are notified of any resultant
change in the market-data published by the exchange.
At that point, all traders in the population are given an
opportunity to update their internal values with the
new information, via a function called respond that is
particular to each specific trading algorithm (that is,
respond is where much, perhaps all, of the detail of the
trading algorithm is encoded); and then control loops
back to another random selection of a single trader to
be polled for an order. A single pass through this
sequence of steps is implied to take a notional time of
1/N seconds, where N is the total number of traders in
the market: in this way, each trader will on average get
a chance to issue an order once per simulated second,
and will call respond N times per simulated second. But
if Trader A's respond takes 1ms of real-time to execute,
and trader B's respond takes 10s of real-time to
compute an answer, BSE's record of simulated time is
the same in both cases: the simulated clock advances in
increments of 1/N seconds, regardless of the wall-time
consumed by the differing respond functions.

The problem with this style of simulation is that each
trader is allotted as much time as it needs to execute its
getorder and respond functions, and it is guaranteed
that nothing else in the market will change while it
executes either of these functions. This means that the
execution time of each trader has no impact on its
performance: instead all that counts is its ability to
generate an order price that will be accepted by another
trader, whilst attempting to generate the greatest
profit. This differs from a real financial exchange where
all traders operating on the market will be operating
asynchronously. In an asynchronous market, a trader
may look at the exchange's market data, i.e. the
currently available information on that market, and use
this to calculate what it considers its best order to send
to the exchange. However, if this trader uses a complex,
slow running algorithm to do so, it may find that by the
time it has completed its calculation, another simpler
and faster trader has already succeeded in executing a
trade, which as a result changes the position of the
market which may render the order than the complex
trader has posted less profitable than expected. This
situation, which happens all the time in real-world
financial markets, cannot be modelled in BSE.

To address this, we created an asynchronous
threaded exchange simulator, TBSE. BSE was written in
the Python programming language, and so we used
that for TBSE too. In TBSE each trader executes on its
own computational thread, as does the exchange. There
is also the main thread of the Python code which
continues to run during the market session and is
responsible for the distribution of customer orders to
each of the traders. Each trader thread consists of a loop
which executes continuously until the end of the
trading session. Within this loop the trader first

258 | 32nd European Modeling & Simulation Symposium, EMSS 2020

receives information of trades which have been
successfully executed at the exchange, it then updates
its own internal record keeping if any of these trades
involved itself and executes its respond function to
update its internal variables based on the new market
data. Once it is updated with the latest market data it
then executes its getorder function which determines
whether it should post a new order to the exchange, and
if so at what price. This order is then put on a queue to
be sent to the exchange.

The exchange operates on this queue, reading orders
from the queue and then processing them by either
adding them to the its list of available orders or
executing a trade if the new order can be matched with
any of its current list of available orders. If a trade can
be executed it then places the details of the resultant
transaction onto a queue for each trader to read before
submitting its next order. The system for processing
orders and trades is almost identical to that of BSE.

In Python, as with other languages that offer such a
feature, multi-threading is where a processor can
operate multiple threads of execution concurrently.
This differs from multi-processing, which Python also
supports, where different processes execute
simultaneously. Both are forms of parallelism, but
whereas in multi-processor programming multiple
processes are executing at the same time on different
physical processors, in multithreading only one thread
can execute at any one time. The execution of each
thread is divided into short segments and the processor
regularly switches between each thread for a short
period of time, giving the appearance that all threads
are executing at the same time. It is not guaranteed that
each thread will be given the exact same amount of
execution time during each cycle, but over the course of
executing an entire program, which may involve
millions of cycles, the execution time given to each
thread should tend towards the same value. In TBSE
this means that each trader is given the same amount
of processing time, so a faster algorithm can complete
its execution and start processing a second order while
a slower algorithm is still calculating its first order
price. In Python, the execution of threads is
synchronized by a Global Interpreter Lock (GIL) which
ensures that only one thread is executing at a time.
Multi-threading was chosen over multi-processing as
most general-purpose CPUs have no more than 8
processing cores, but for our experiments we want to
simulate the parallel execution of many more than 8
traders operating simultaneously.

The queues used within TBSE are synchronous first
in, first out (FIFO) queues, meaning that the trader who
places an order on the exchange queue first will have
their order processed first. This is a good simulation of
real exchange behavior as it is commonplace for
exchanges to prioritize orders by their time of arrival.

4. Results

Table 1 shows a high-level summary of our results
for AAvsZIC, AAvsZIP, GDXvsZIC, and GDXvsZIP.
Characterizing each of these four experiments as
Algorithm A vs Algorithm B, the central sub-table of
Table 1 shows the count of "wins" for A and the count
of wins for B in BSE, with the higher of the two counts
highlighted in bold font; and then the right-hand sub-
table of Table 1 shows the corresponding win-counts
for A and for B operating instead in TBSE, again with
the higher value highlighted in bold font.

As can be seen from Table 1, our results for BSE are
consistent with those previously published in the
literature: there is nothing in our BSE results to
challenge the status quo: AA>ZIC & ZIP; GDX>ZIC&ZIP.
However, the TBSE results in Table 1 tell a very different
story. AA still beats ZIC, which is intuitively what one
would expect. But the other three dominance
relationships have been inverted: in TBSE, ZIC beats
GDX while ZIP beats both AA and GDX – scoring more
than twice as many wins as GDX, beating it by a larger
margin than it beat ZIP in BSE.

If we chose, we could stop here. We have now
established an answer to the question that we set out to
explore: whether a switch to a more realistic (i.e.,
parallel) market simulation makes a difference to the
dominance relationships previously reported: it clearly
does. This is a significant finding and is the primary
contribution of this paper. However, there is more to
say.

Each number in Table 1 represents the number of
"wins" scored by a specific algorithm, in a series of
19x500 market sessions, ranging over 19 ratios of
TraderA:TraderB (denoted by Ra: ranging here from
1:19 to 19:1), with n=500 trials at each value of Ra. One
obvious thing to do is to separate the aggregate results
for any one pair of trader algorithms into the 19 sets of
results, one for each value of Ra, and to look for any
interesting changes in the patterns of wins as Ra is
swept from one extreme to another. Table 2 shows such
a data-set, for AA-vs-ZIC. As you can see, at the bottom
of the table is the sum of all the wins in each column,
and the relevant column-sums in Table 2 are the values
that populate the first row of Table 1. Table 2 adds a
third column to the results for BSE and TBSE: a variable
we call wins, which is simply the difference between
the two algorithm's win-counts. In an A-vs-B
comparison of two trading algorithms: if wins>0 then
A outperforms B; and if wins<0 then B outperforms A.
The two sets of wins values shown in Table 2 can be
plotted graphically in the style shown in Figure 1, a
paired plot that we refer to as the delta curves for two
trading strategies tested in BSE and then in TBSE.

Rollins & Cliff | 259

Table 1. Summary of all our experiment results, showing total
number of "wins" summed over 19 different A-vs-B trials in BSE
(central sub-table) and in TBSE (right-hand sub-table). The 19
different trials vary the ratio Ra of trading algorithm A ("AlgoA") to
trading algorithm B ("AlgoB") from 1:19 through 10:10 to 19:1, and at
each ratio we conduct n=500 i.i.d market sessions, which are treated
as contest between AlgoA and AlgoB: if, at the end of a session, the
average profit per trader for AlgoA is greater than that for AlgoB,
then that counts as a "win" for AlgoA. Hence, the maximum possible
score is 19x500=9,500. In each row, bold-font text is used to
highlight the larger number of wins in each A-vs-B comparison. As
can be seen, switching from BSE to TBSE has no effect in the case of
AA-vs-ZIC, but for the other three cases we see a reversal of the
dominance relationship. See text for further discussion.

The rest of this results section shows selected
highlights from digging deeper into the outcomes of
our experiments. As it happens, a deeper dig unearths
some thought-provoking results.

The delta curves from Table 2, i.e. for AA-vs-ZIC,
look roughly the same as each other, modulo some
noise from the stochastic elements in our simulation,
and are not shown here, but Figures 1, 2, and 3 show the
delta curves for AA-vs-ZIP, GDX-vs-ZIC, and GDX-vs-
ZIP, respectively. These are the three sets of
experiments in which the switch from BSE to TBSE
inverted the dominance relationship between the
trading algorithms, and they deserve some
examination and discussion.

Table 2. The data that was aggregated into the top row of Table 1,
tabulated to show the individual results from each of the 19 different
ratios of the two algorithms used: n=500 at each ratio. The full table
is not shown here, because the specific details do not matter.
Column sums are displayed at the bottom of the table, and
correspond to the values given in the top row of Table 1.

AA-vs-ZIP (Figure 1). Here there seems to be some

coherent structure in the BSE delta curve: although AA
consistently outperforms ZIP, the degree by which it
beats ZIP seems to attenuate when the Ra is at either
extreme of its range, and the maximum
outperformance of AA over ZIP seems to be when
Ra<10:10, i.e. when AA is in the minority of the
population. The relevance of this is seen in the TBSE
delta curve in Fig.2: we saw in Table 1 that ZIP wins on
aggregate in this set of experiments, but Fig.2 makes
clear that when AA is in a small minority in TBSE it can
still outperform ZIP, yet as soon as the ratio of AA
traders exceeds 50% its dominance disappears and it is

outperformed by ZIP.

GDX-vs-ZIC (Figure 2). Here, for both BSE and
TBSE, the delta curves have a clear coherent structure
to them, which is something that we do not think has
been reported before in the literature: we know from
Vach (2015), Cliff (2019), and Snashall & Cliff (2019)
that ratio matters, but none of those publications
reported or explored such strongly coherent
relationships between ratio and results, between Ra and
wins.

Figure 1. "Delta Curves" for AA vs ZIP in BSE (left) and TBSE (right).
This pair of graphs shows the wins data, as was tabulated for AA vs
ZIC in Table 2: the horizontal axis shows Ra and is labelled with the
number of AA traders in the ratio; the vertical axis is the value of
wins. When wins>0, AA outperforms ZIP, and when wins<0, ZIP
beats AA.

Figure 2 shows fairly unambiguously that GDX
outperforms ZIC when GDX is in the minority, and ZIC
outperforms GDX when ZIC is in the minority. Figure 3
also reveals that the qualitative nature of the swing
from GDX dominance in BSE to ZIC dominance in TBSE
differs from that from AA to ZIP that was illustrated in
Figure 1: whereas the two delta plots in Figure 1 are
markedly different, the two curves in Figure 2 are
remarkably similar: the TBSE curve could plausibly be
described as what happens when the BSE curve is
shifted slightly to the right and slightly down. Also
notable is that in both BSE and TBSE the maximum
outperformance of ZIC by GDX happens at roughly a
ratio of 1:3, and the maximum outperformance of GDX
by ZICs seems similarly to happen at roughly 3:1. This
strikes us as curious in that experience tells us that
usually in these kind of experiments maxima would
normally be expected to occur either at the endpoints of
the scale (i.e. at ratios of 1:19 or 19:1) or near the
midpoint (i.e. at 10:10) why this is so is something we
aim to investigate in further work.

Figure 2. Delta curves for GDX vs ZIC; format is the same as in Figure
1.

GDX-vs-ZIP (Figure 3): again, there is a clear
coherence to the delta curves, although the

260 | 32nd European Modeling & Simulation Symposium, EMSS 2020

relationship between the BSE and TBSE curves is not as
similar as that in Figure 2, and not as different as that
in Figure 1. In a point of similarity with the GDX-vs-ZIC
curves, again the peak performance of the two
strategies come at ratios of roughly 3:1 and 1:3 (and,
again, we do not know why this should be so) but for
GDX-vs-ZIP the relative performance of the two
algorithms does not level out to zero near ratio values
of 10:10 and then cross into underperformance for the
algorithm that is in the majority; instead in BSE GDX
pretty consistently outperforms ZIP and in TBSE the
situation is the inverse: now ZIP is the dominant
algorithm at almost all ratios, and again the degree of
dominance falls steadily as the proportion of ZIPs
increases beyond 1:3). Further work is required to
understand why these delta curves have this particular
qualitative shape.

Figure 3. Delta curves for GDX vs ZIP; format is the same as in Figure
1.

5. Discussion and Further Work

One thing that is notable from the delta curves in
Figures 1, 2, and 3 is that, despite the points of
similarity highlighted above, the effect that shifting
from BSE to TBSE has on the delta curves is
qualitatively different for each pair of trading
algorithms: the data we have studied thus far reveals no
conveniently simple patterns that allow us to make a
priori predictions or generalizations about when
Algorithm A will outperform Algorithm B. Figure 2 is
the starkest illustration of this point: recall that GDX
was developed at IBM TJ Watson Research Labs, was
preceded by two earlier versions (GD, then MGD), and
when published was described by IBM as the best-
performing trading algorithm in the then-published
literature. We do not seek to criticize the IBM team, but
our results show that, when the conditions are right
(i.e., when the ratio of GDX:ZIC is in the right range), in
fact GDX can be consistently out-performed by ZIC.
Gode & Sunder's ZIC paper had been published six years
before IBM's GDX paper, and while GDX mixes the
construction of a probabilistic belief function with
techniques from dynamic programming, the ZIC
algorithm takes up one line of code.

One avenue of further work comes in attempting to
understand what features, if any, of the trading
algorithms interact in such a way that they give rise to
the delta curves that we have plotted here, and the
extent to which those delta curves are affected by
changes in other significant factors, such as the

market's supply and demand schedules. Also, here we
presented results that focus on four trading algorithms
that have been used repeatedly in studies of artificial
trading systems over the past 20 years, but there are
several other algorithms which could be added into this
analysis. And, when we're done with analyzing
interactions between A/B pairs of trading algorithms,
we can move on to A/B/C triples (in which case the delta
curves could be plotted as points on a simplex), and
then on to various ratios of four or five or six different
algorithms, etc. But as the number of algorithms
involved in any one comparison increases, so do the
number of trials required (the combinatorics are
explosive, and the computational cost even of the
experiments shown here was measured in days of CPU
time), and so do the difficulties of visualizing and
analyzing the results.

6. Conclusion

Prior to this paper, anyone reading the trading-
agent literature would have been likely to form the
opinion that there was widespread agreement that, in
general, AA beats GDX, GDX beats ZIP, and ZIP beats
ZIC. Only a careful reading of the literature would reveal
that many of the relevant results came from single-
threaded simulations. Our results presented here show
that while the AA>GDX>ZIP>ZIC dominance hierarchy
may hold true in simple simulations, as soon as real-
time factors matter, i.e. as soon as the various
algorithms are operating in parallel, the computational
costs of a sophisticated algorithm such as GDX count
against it, and it can be outrun by simpler but faster
algorithms. So, the primary contribution of this paper
is our demonstration here that the old single-threaded
dominance hierarchy is not maintained in multi-
threaded TBSE. As Table 1 shows, in A/B comparisons
on TBSE we have AA beating ZIC, ZIP beating AA, ZIC
beating GDX, and ZIP beating GDX; results that can be
summarized as ZIP>AA>ZIC>GDX.

Our work calls into question not just the truth of
specific claims of dominance, but also whether it is ever
worth trying to make such claims at all, because any
trading-algorithm's performance, and hence
dominance, is clearly so heavily affected by factors
exogenous to that trading algorithm, chief of which is
what other algorithms it is competing against, and in
what proportion or ratio those different algorithms are
present in the market: it's a manifestly game-theoretic
situation, but game theory offers no help here. We
question whether, in markets that are sufficiently
realistic to be relevant to the real world, there can ever
really be a single specific trading algorithm that is
"dominant", that actually beats all the rest. Hence, we
conclude with this: if you think your trading algorithm
really is the dominant one, you have probably tested it
in simulations that are too simple.

Rollins & Cliff | 261

References

BSE, 2012. Bristol Stock Exchange. GitHub repository at
https://github.com/davecliff/BristolStockExchange

Cliff, D., 1997. Minimal-Intelligence Agents for
Bargaining Behaviours in Market-Based
Environments. HP Labs Tech. Rep. HPL-97-91.

Cliff, D., 2019. Exhaustive Testing of Trader-Agents in
Realistically Dynamic CDA Markets. In Proceedings
ICAART-2019.

Cliff, D., 2019. Simulation-Based Evaluation of
Automated Trading Strategies: A Manifesto for
Modern Methods. Proc. EMSS-2019.

Das, R., Hanson, J., Kephart, J., Tesauro, G., 2001.
Agent-Human Interactions in the CDA. Proc. IJCAI-
2001, pp.1169-1176.

De Luca, M., Cliff, D., 2011a. Agent-Human Interactions
in the CDA, Redux. Proceedings ICAART-2011.

De Luca, M., Cliff, D., 2011b. Human-Agent Auction
Interactions: Adaptive-Aggressive Agents
Dominate. Proceedings IJCAI-2011.

De Luca, M., 2015. Adaptive Algorithmic Trading Systems.
PhD Thesis, University of Bristol, UK.

Gjerstad, S., Dickhaut, J., 1997. Price Formation in
Continuous Double Auctions. Games & Economic
Behavior. 22(1):1-29.

Gode, D., Sunder, S., 1993. Allocative Efficiency of
Markets with Zero-Intelligence Traders. JPE,
101(1):119-137.

Rollins, M. 2020. Threaded BSE: Experiments with
Parallel Asynchronous Algorithmic Trading Systems.
Master's Thesis, University of Bristol.

Rust, J., Miller, J., Palmer, R., 1992. Behavior of Trading
Automata in a CDA Market. In Friedman, D., Rust, J.
(eds) The Double Auction Market: Theories and
Evidence. Addison-Wesley, pp.155-198.

Smith, V., 1962. An Experimental Study of Competitive
Market Behavior. Journal of Political Economy
70(2):111-137.

Snashall, D., 2019. An Exhaustive Comparison of
Algorithmic Trading Strategies: AA Does Not Dominate.
Master's Thesis, Uni. of Bristol.

Snashall, D., Cliff, D., 2019. Adaptive-Aggressive
Traders Don't Dominate. In van den Herik, J., Rocha,
A., Steels, L., (eds) Agents & Artificial Intelligence:
Papers from ICAART 2019. Springer.

Sommerville, I., Cliff, D., et al. 2012. Large Scale IT
Systems. CACM, 55(7).

Tesauro, G., Das, R., 2001. High-performance Bidding
Agents for the CDA. Proc. 3rd ACM Conf. on E-
Commerce, pp.206-209.

Tesauro, G., Bredin, J., 2002. Sequential Strategic

Bidding in Auctions using Dynamic Programming.
Proceedings AAMAS2002.

Vach, D., 2015. Comparison of Double Auction Bidding
Strategies for Trading Agents. MSc Thesis, Charles
University in Prague.

Vytelingum, P., 2006. The Structure and Behaviour of the
Continuous Double Auction. PhD Thesis, University of
Southampton.

Vytelingum, P., Cliff, D. Jennings, N., 2008. Strategic
Bidding in Continuous Double Auctions. Artificial
Intelligence, 172(14):1700-1729.

https://github.com/davecliff/BristolStockExchange
http://www.jstor.org/stable/10.2307/2138676
http://www.jstor.org/stable/10.2307/2138676

