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Abstract 
This paper presents novel results, generated from a new simulation model of a contemporary financial market, that cast serious 
doubt on the previously widely accepted view of the relative performance of various well-known public-domain automated-
trading algorithms. Put simply, we show here that if you use a more realistic market simulator, then trading algorithms 
previously thought to be the best-performing are shown to be not as good as people think they are, and some algorithms 
previously thought to be poor performers can be seen to do surprisingly well. Automated trading is now entirely commonplace in 
most of the world's major financial markets: adaptive algorithmic trading systems operate largely autonomously, interacting 
with other traders (either other automated systems, or humans) via an electronic exchange platform. Various public-domain 
trading algorithms have been proposed over the past 25 years in a kind of arms-race, where each new trading algorithm was 
compared to the previous best, thereby establishing a "pecking order", i.e. a partially-ordered dominance hierarchy from best to 
worst of the various trading algorithms. Many of these algorithms were developed, tested, and evaluated using simple minimal 
simulations of financial markets that only very weakly approximated the fact that real markets involve many different trading 
systems operating asynchronously and in parallel. In this paper we use BSE, a long-established public-domain market simulator, 
to run a set of experiments generating benchmark results from several well-known trading algorithms. BSE incorporates a very 
simple time-sliced approach to simulating parallelism, which has obvious known weaknesses. We then alter and extend BSE to 
make it threaded, so that different trader algorithms operate asynchronously and in parallel: we call this simulator Threaded-BSE 
(TBSE). We then re-run the trader experiments on TBSE and compare the TBSE results to our earlier benchmark results from BSE. 
Our comparison shows that the dominance hierarchy in our more realistic experiments is different from the one given by the 
original simple simulator. We conclude that simulated parallelism matters a lot, and that earlier results from simple simulations 
comparing different trader algorithms are no longer to be entirely trusted.  
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1. Introduction 

This paper presents new evidence that key results 
previously published in the literature on automated 
trading systems may be artefacts of the simplistic 
modelling and simulation methods used to generate 
them. In particular, we have taken a long-established 

public-domain simulator of a contemporary electronic 
financial market, called BSE, and used it to generate a 
set of benchmark results from four very widely-used 
public-domain automated-trading algorithms, known 
as ZIC, ZIP, GDX, and AA (we explain these in more 
detail, later). These initial BSE benchmark results 
confirm the previously-published dominance-
hierarchy, or "pecking order", where AA beats GDX, 

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:csdtc@bristol.ac.uk


Rollins & Cliff | 255 
 

 

GDX beats ZIP, and ZIP beats ZIC, which we write in 
abbreviated form as AA>GDX>ZIP>ZIC. The BSE 
simulator is deliberately simple in its modelling of 
time, and uses only a single thread, a single computer 
process, which it divides among the various simulated 
automated traders in such a way that the response-
time, the time for an automated trader to compute an 
answer, is not simulated and hence very complicated 
trading systems that would take a lot of "thinking 
time" to compute a response to some change in the 
market are treated as if they take exactly the same time 
as the very fastest of trading algorithms. This is clearly 
unrealistic, yet BSE's approach to simulating time is 
not uncommon.  

We then constructed a modified version of the BSE 
simulator, which is threaded, i.e. uses multiple 
concurrently running computer processes ("threads") 
to model the parallel and asynchronous nature of real 
financial markets, where multiple traders operate 
independently, in parallel and asynchronously: we call 
this simulator Threaded-BSE (TBSE). We then re-run 
our experiments on TBSE and find, as we show here for 
the first time, that the dominance hierarchy in TBSE is 
very different from that found in BSE: from our current 
results it seems that when operating in parallel the 
dominance hierarchy is instead ZIP>AA>ZIC>GDX. 
This is a novel result and is the key contribution of this 
paper. That is, we demonstrate here that previous use 
of simplistic simulation methodologies has produced 
sets of results which, although widely cited, can now no 
longer be trusted.  

Section 2 of this paper gives a summary of the 
background to this work, and is taken largely verbatim 
from a position paper published by one of us at 
EMSS2019 (Cliff, 2019): our new results presented here 
can be read as an empirical illustration of the 
arguments made in that EMSS2019 paper. Section 3 
gives more details of our methods; Section 4 shows key 
results; and Section 5 offers a discussion of the results, 
and of possible avenues of further work. TBSE is fully 
documented in (Rollins, 2020), including details of the 
TBSE source-code repository on GitHub. 

2. Background 

2.1. Traders, Markets, and Experimental Economics 

The 2002 Nobel Prize in Economics was awarded to 
Vernon Smith, in recognition of Smith’s work in 
establishing and thereafter growing the field of 
Experimental Economics (abbreviated hereafter to 
“EE”). Smith showed that the microeconomic behavior 
of human traders interacting within the rules of some 
specified market, known technically as an auction 
mechanism, could be studied empirically, under 
controlled and repeatable laboratory conditions, rather 
than in the noisy messy confusing circumstances of 
real-world markets. The minimal laboratory studies 
could act as useful proxies for studying real-world 
markets of any type, but one particular auction 

mechanism has received the majority of attention: the 
Continuous Double Auction (CDA), in which any buyer 
can announce a bid-price at any time and any seller can 
announce an offer-price at any time, and in which at 
any time any trader in the market can accept an offer or 
bid from a counterparty, and thereby engage in a 
transaction. The CDA is the basis of major financial 
markets worldwide, and tens of trillions of dollars flow 
through CDA markets every year.  

Each trader in one of Smith's experimental CDA 
markets would be assigned a private valuation, a secret 
limit price: for a buyer this was the price above which he 
or she should not pay when purchasing an item; for a 
seller this was the price below which he or she should 
not sell an item. These limit-price assignments model 
the client orders executed by sales traders in real 
financial markets; we’ll refer to them just as 
assignments in the rest of this paper. Traders in EE 
experiments from Smith's onwards are often 
motivated by payment of some form of real-world 
reward that is proportional to the amount of "profit" 
that they accrue from their transactions: the profit is 
the absolute value of the difference between the limit 
price specified when a unit is assigned to a trader, and 
the actual transaction price for that unit.  

The limit prices in the assignments defined the 
market's supply and demand schedules, which are 
commonly illustrated in economics texts as supply and 
demand curves on a 2D graph with quantity on the 
horizontal axis and price on the vertical axis: where the 
two curves intersect is the market's theoretical 
competitive equilibrium point: indicating the 
equilibrium price (denoted here by P0). A fundamental 
observation from microeconomics (the study of 
markets and prices) is that competition among buyers 
pushes prices up, and competition among sellers 
pushers prices down, and these two opposing 
influences on prices balance out at the competitive 
equilibrium point; a market in which transaction prices 
rapidly and stably settles to the P0 value is often viewed 
by economists as efficient (for a specific definition of 
efficiency) whereas a market in which transactions 
consistently occur at off-equilibrium prices is usually 
thought of as inefficient: for instance, if transaction 
prices are consistently above P0 then it's likely that 
buyers are being ripped off. By varying the prices in the 
traders' assignments in Smith's experiments, the 
nature of the market's supply and demand curves could 
be altered, and the effects of those variations on the 
speed and stability of the market's convergence toward 
an equilibrium point could be measured.  

Smith’s initial set of experiments were run in the 
late 1950’s, and were described in his first paper on EE, 
published in the prestigious Journal of Political Economy 
(JPE) in 1962. The experiment methods laid out in that 
1962 paper would subsequently come to dominate the 
methodology of researchers working to build adaptive 
autonomous automated trading agents by combining 
tools and techniques from Artificial Intelligence (AI) 
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and Machine Learning (ML). This strand of AI/ML 
research converged toward a common aim: specifying 
an artificial agent, an autonomous adaptive trading 
strategy, that could automatically tune its behavior to 
different market environments, and that could reliably 
beat all other known automated trading strategies, 
thereby taking the crown of being the current best 
trading strategy known in the public domain, i.e., the 
“dominant strategy”. Over the past 20 years the 
dominant strategy crown has passed from one 
algorithm to another and until very recently 
Vytelingum’s (2006, 2008) "AA" strategy, was widely 
believed to be the dominant strategy, but recent results 
using contemporary large-scale computational 
simulation techniques indicate that it does not always 
perform so well as was previously believed, as 
discussed in the next section: Section 2.2 briefly 
reviews key publications leading to the development of 
AA, and the recent research that called its dominance 
into question.  

2.2. A Brief History of Trading Agents 

If our story starts with Smith’s 1962 JPE paper, then 
the next major step came 30 years later, with a 
surprising result published in the JPE by Gode & Sunder 
(1993): this popularized a minimally simple automated 
trading algorithm now commonly referred to as ZIC. A 
few years later two closely related research papers were 
published independently and at roughly the same time, 
each written without knowledge of the other: the first 
was a Hewlett-Packard Labs technical report by Cliff 
(1997) describing the adaptive AI/ML trading-agent 
strategy known as the ZIP algorithm; the second 
summarized the PhD thesis work of Gjerstad, in a paper 
co-authored with his PhD advisor (Gjerstad & Dickhaut 
1998), describing an adaptive trading algorithm now 
widely known simply as GD. After graduating his PhD, 
Gjerstad worked at IBM’s TJ Watson Labs where he 
helped set up an EE laboratory that his IBM colleagues 
used in a study that generated world-wide media 
coverage when its results were published by Das et al. at 
the prestigious International Joint Conference on AI 
(IJCAI) in 2001. This paper presented results from 
studies exploring the behavior of human traders 
interacting with GD and ZIP robot traders, and 
demonstrated that both GD and ZIP reliably 
outperformed human traders. A follow-on 2001 paper 
by Tesauro & Das (two co-authors of the IBM IJCAI 
paper) described a more extensively Modified GD (MGD) 
strategy, and later Tesauro & Bredin (2002) described 
the GD eXtended (GDX) strategy. Both MGD and GDX 
were each claimed to be the strongest-known public-
domain trading strategies at the times of their 
publication.  

Subsequently, Vytelingum’s 2006 thesis introduced 
the Adaptive Aggressive (AA) strategy which, in a major 
journal paper (Vytelingum et al., 2008), and in later 
conference papers (De Luca & Cliff 2012a, 2012b), was 
shown to be dominant over ZIP, GDX, and human 
traders. Thus far then, ZIP had been beaten by GDX, and 

AA had beaten GDX, and hence AA held the title. In 
shorthand, we had AA>GDX>ZIP.  

In all of the studies discussed thus far, typically two 
or three different types of trading algorithm would be 
compared against each other on the basis of how much 
profit (or surplus, to use the economists' technical 
term) they extract from the market, so Algorithm A was 
said to dominate or outperform or beat or be stronger than 
Algorithm B if, over some number of market sessions, 
traders running A made more money than traders 
running B. Methods of comparison varied.  Sometimes 
a particular market set-up (i.e., a specific number of 
sellers, number of buyers, and their associated limit-
price assignments specifying the market's supply and 
demand schedules) would be homogeneously 
populated with traders of type A, and then the same 
market would be re-run with all traders instead being 
type B, and an A/B comparison of profitability in the 
absence of any other trading algorithms could then be 
made. In other comparisons, for a market with B buyers 
and S sellers, B/2 of the buyers would use Algorithm A 
and the remaining B/2 buyers would run Algorithm B, 
with the seller population being similarly split, and the 
A/B comparison then showed profitability in the 
presence of the other trading algorithm. A/B tests 
involving 50:50 splits, as just described, were 
commonly used to establish the dominance 
relationship between A and B.    

Comparatively recently, Vach (2015) presented 
results from experiments with the OpEx market 
simulator (De Luca, 2015), in which AA, GDX, and ZIP 
were set to compete against one another, and in which 
the dominance of AA was questioned: Vach’s results 
indicate that whether AA dominates or not can be 
dependent on the ratio of AA:GDX:ZIP in the 
experiment: for some ratios, Vach found AA to 
dominate; for other ratios, it was GDX. Vach studied 
only a very small sample from the space of possible 
ratios, but his results prompted Cliff (2019) to use the 
public-domain "BSE" financial exchange simulator 
(BSE, 2012) to exhaustively run through a wide range of 
differing ratios of four trading strategies (AA, ZIC, ZIP, 
and the minimally simple SHVR built into BSE), doing a 
brute-force search for situations in which AA is 
outperformed by the other strategies. Cliff reported on 
results from over 3.4 million individual simulations of 
market sessions, which indicated that Vach’s 
observation was correct: whether AA dominates does 
indeed depend on how many other AA traders are in the 
market, and what mix of what other strategies are also 
present. Depending on the ratio, AA could be 
outperformed by ZIP and by SHVR. Subsequent 
research by Snashall (2019) employed the same 
exhaustive testing method, using a supercomputer to 
run more than one million market simulations (all in 
BSE) to exhaustively test AA against IBM's GDX 
strategy: this again revealed that AA does not always 
dominate GDX: see Snashall & Cliff (2019) for 
discussion.   
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In this paper we will talk about counting the number 
of "wins" when comparing an A algorithm to a B 
algorithm: in the experiments reported in Section 4, we 
create a specific market set-up, and then run some 
number n of independent and identically distributed 
markets sessions with some ratio A:B of the two 
strategies in the buyers, and the same A:B ratio in the 
sellers. In any one of those sessions, if the average 
profit per trader (APPT) of type A traders is higher than 
the APPT for traders of type B, then we count that 
session as a "win" for A; and vice versa as a win for B. In 
the experiments reported in Section 4, assignments to 
buy or sell are issued to the traders periodically, with all 
traders being updated at the same time, and the limit 
prices in the assignments came from symmetric supply 
and demand curves where the equilibrium price was 
varied dynamically using the sinusoidal offset function 
illustrated in Fig.4.8 of the BSE user guide (BSE, 2012).    

Our experiments reported here are motivated by this 
progression of past research. In particular, we noted 
that Vach's results which first revealed that the ratio of 
different trading algorithms could affect the 
dominance hierarchy came from experiments he ran 
using De Luca's (2015) OpEx market simulator, which 
is a true parallel asynchronous distributed system: 
OpEx involves a number of individual trader computers 
(discrete laptop PCs) communicating over a local-area 
network with a central exchange-server (a desktop PC). 
But many of the other results that we have just 
summarized came from financial-market simulators 
that only very roughly approximated parallel 
execution: Cliff (1997) published C-language source-
code for the discrete-event simulator he developed to 
test and compare ZIC with ZIP; and the BSE simulator 
(BSE, 2012) also uses a very simple time-sliced 
approach where, if any one trader is called upon to issue 
a response to a change in the market, it always does so 
within exactly one simulated time-slice within the 
simulation, regardless of how much computation it has 
to execute to generate that response. Snashall & Cliff 
(2019) noted that the actual reaction-times of the 
various trading algorithms varied quite widely, and in a 
true parallel simulation the slower traders might be 
expected to do much less well than when they are 
evaluated or compared in a temporally simplistic 
simulation. So, possibly Vach's results were as much to 
do with his use of OpEx as his varying of the ratios of 
trader-algorithms. That is what we set out to explore in 
this paper. In order to do that, we developed TBSE, a 
new threaded (parallel) version of the BSE financial-
market simulator, discussed in the next section.  

3. TBSE: Threaded BSE 

Much of the functionality of TBSE was directly 
borrowed from the original BSE simulator. The key 
changes affect the way each market session operates. In 
BSE, each market session is executed on a single thread 
in which a core loop executes repeatedly until the 
session end-time is passed. Within this loop a single 
trader in the market's population of traders is selected 

at random, and that trader is polled to see if it wants to 
issue an order: this is achieved by calling that trader's 
getorder function. If the trader does issue an order, 
that order is then processed by the exchange and all 
traders in the population are notified of any resultant 
change in the market-data published by the exchange. 
At that point, all traders in the population are given an 
opportunity to update their internal values with the 
new information, via a function called respond that is 
particular to each specific trading algorithm (that is, 
respond is where much, perhaps all, of the detail of the 
trading algorithm is encoded); and then control loops 
back to another random selection of a single trader to 
be polled for an order. A single pass through this 
sequence of steps is implied to take a notional time of 
1/N seconds, where N is the total number of traders in 
the market: in this way, each trader will on average get 
a chance to issue an order once per simulated second, 
and will call respond N times per simulated second. But 
if Trader A's respond takes 1ms of real-time to execute, 
and trader B's respond takes 10s of real-time to 
compute an answer, BSE's record of simulated time is 
the same in both cases: the simulated clock advances in 
increments of 1/N seconds, regardless of the wall-time 
consumed by the differing respond functions.   

The problem with this style of simulation is that each 
trader is allotted as much time as it needs to execute its 
getorder and respond functions, and it is guaranteed 
that nothing else in the market will change while it 
executes either of these functions. This means that the 
execution time of each trader has no impact on its 
performance: instead all that counts is its ability to 
generate an order price that will be accepted by another 
trader, whilst attempting to generate the greatest 
profit. This differs from a real financial exchange where 
all traders operating on the market will be operating 
asynchronously. In an asynchronous market, a trader 
may look at the exchange's market data, i.e. the 
currently available information on that market, and use 
this to calculate what it considers its best order to send 
to the exchange. However, if this trader uses a complex, 
slow running algorithm to do so, it may find that by the 
time it has completed its calculation, another simpler 
and faster trader has already succeeded in executing a 
trade, which as a result changes the position of the 
market which may render the order than the complex 
trader has posted less profitable than expected. This 
situation, which happens all the time in real-world 
financial markets, cannot be modelled in BSE.  

To address this, we created an asynchronous 
threaded exchange simulator, TBSE. BSE was written in 
the Python programming language, and so we used 
that for TBSE too. In TBSE each trader executes on its 
own computational thread, as does the exchange. There 
is also the main thread of the Python code which 
continues to run during the market session and is 
responsible for the distribution of customer orders to 
each of the traders. Each trader thread consists of a loop 
which executes continuously until the end of the 
trading session. Within this loop the trader first 
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receives information of trades which have been 
successfully executed at the exchange, it then updates 
its own internal record keeping if any of these trades 
involved itself and executes its respond function to 
update its internal variables based on the new market 
data. Once it is updated with the latest market data it 
then executes its getorder function which determines 
whether it should post a new order to the exchange, and 
if so at what price. This order is then put on a queue to 
be sent to the exchange.  

The exchange operates on this queue, reading orders 
from the queue and then processing them by either 
adding them to the its list of available orders or 
executing a trade if the new order can be matched with 
any of its current list of available orders. If a trade can 
be executed it then places the details of the resultant 
transaction onto a queue for each trader to read before 
submitting its next order. The system for processing 
orders and trades is almost identical to that of BSE.   

In Python, as with other languages that offer such a 
feature, multi-threading is where a processor can 
operate multiple threads of execution concurrently. 
This differs from multi-processing, which Python also 
supports, where different processes execute 
simultaneously. Both are forms of parallelism, but 
whereas in multi-processor programming multiple 
processes are executing at the same time on different 
physical processors, in multithreading only one thread 
can execute at any one time. The execution of each 
thread is divided into short segments and the processor 
regularly switches between each thread for a short 
period of time, giving the appearance that all threads 
are executing at the same time. It is not guaranteed that 
each thread will be given the exact same amount of 
execution time during each cycle, but over the course of 
executing an entire program, which may involve 
millions of cycles, the execution time given to each 
thread should tend towards the same value. In TBSE 
this means that each trader is given the same amount 
of processing time, so a faster algorithm can complete 
its execution and start processing a second order while 
a slower algorithm is still calculating its first order 
price. In Python, the execution of threads is 
synchronized by a Global Interpreter Lock (GIL) which 
ensures that only one thread is executing at a time. 
Multi-threading was chosen over multi-processing as 
most general-purpose CPUs have no more than 8 
processing cores, but for our experiments we want to 
simulate the parallel execution of many more than 8 
traders operating simultaneously. 

The queues used within TBSE are synchronous first 
in, first out (FIFO) queues, meaning that the trader who 
places an order on the exchange queue first will have 
their order processed first. This is a good simulation of 
real exchange behavior as it is commonplace for 
exchanges to prioritize orders by their time of arrival. 

 

4. Results 

Table 1 shows a high-level summary of our results 
for AAvsZIC, AAvsZIP, GDXvsZIC, and GDXvsZIP. 
Characterizing each of these four experiments as 
Algorithm A vs Algorithm B, the central sub-table of 
Table 1 shows the count of "wins" for A and the count 
of wins for B in BSE, with the higher of the two counts 
highlighted in bold font; and then the right-hand sub-
table of Table 1 shows the corresponding win-counts 
for A and for B operating instead in TBSE, again with 
the higher value highlighted in bold font.   

As can be seen from Table 1, our results for BSE are 
consistent with those previously published in the 
literature: there is nothing in our BSE results to 
challenge the status quo: AA>ZIC & ZIP; GDX>ZIC&ZIP. 
However, the TBSE results in Table 1 tell a very different 
story. AA still beats ZIC, which is intuitively what one 
would expect. But the other three dominance 
relationships have been inverted: in TBSE, ZIC beats 
GDX while ZIP beats both AA and GDX – scoring more 
than twice as many wins as GDX, beating it by a larger 
margin than it beat ZIP in BSE.  

If we chose, we could stop here. We have now 
established an answer to the question that we set out to 
explore: whether a switch to a more realistic (i.e., 
parallel) market simulation makes a difference to the 
dominance relationships previously reported: it clearly 
does. This is a significant finding and is the primary 
contribution of this paper. However, there is more to 
say. 

Each number in Table 1 represents the number of 
"wins" scored by a specific algorithm, in a series of 
19x500 market sessions, ranging over 19 ratios of 
TraderA:TraderB (denoted by Ra: ranging here from 
1:19 to 19:1), with n=500 trials at each value of Ra. One 
obvious thing to do is to separate the aggregate results 
for any one pair of trader algorithms into the 19 sets of 
results, one for each value of Ra, and to look for any 
interesting changes in the patterns of wins as Ra is 
swept from one extreme to another. Table 2 shows such 
a data-set, for AA-vs-ZIC. As you can see, at the bottom 
of the table is the sum of all the wins in each column, 
and the relevant column-sums in Table 2 are the values 
that populate the first row of Table 1. Table 2 adds a 
third column to the results for BSE and TBSE: a variable 
we call wins, which is simply the difference between 
the two algorithm's win-counts. In an A-vs-B 
comparison of two trading algorithms: if wins>0 then 
A outperforms B; and if wins<0 then B outperforms A. 
The two sets of wins values shown in Table 2 can be 
plotted graphically in the style shown in Figure 1, a 
paired plot that we refer to as the delta curves for two 
trading strategies tested in BSE and then in TBSE.  
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Table 1. Summary of all our experiment results, showing total 
number of "wins" summed over 19 different A-vs-B trials in BSE 
(central sub-table) and in TBSE (right-hand sub-table). The 19 
different trials vary the ratio Ra of trading algorithm A ("AlgoA") to 
trading algorithm B ("AlgoB") from 1:19 through 10:10 to 19:1, and at 
each ratio we conduct n=500 i.i.d market sessions, which are treated 
as contest between AlgoA and AlgoB: if, at the end of a session, the 
average profit per trader for AlgoA is greater than that for AlgoB, 
then that counts as a "win" for AlgoA. Hence, the maximum possible 
score is 19x500=9,500. In each row, bold-font text is used to 
highlight the larger number of wins in each A-vs-B comparison. As 
can be seen, switching from BSE to TBSE has no effect in the case of 
AA-vs-ZIC, but for the other three cases we see a reversal of the 
dominance relationship. See text for further discussion. 

 

 

The rest of this results section shows selected 
highlights from digging deeper into the outcomes of 
our experiments. As it happens, a deeper dig unearths 
some thought-provoking results. 

The delta curves from Table 2, i.e. for AA-vs-ZIC, 
look roughly the same as each other, modulo some 
noise from the stochastic elements in our simulation, 
and are not shown here, but Figures 1, 2, and 3 show the 
delta curves for AA-vs-ZIP, GDX-vs-ZIC, and GDX-vs-
ZIP, respectively. These are the three sets of 
experiments in which the switch from BSE to TBSE 
inverted the dominance relationship between the 
trading algorithms, and they deserve some 
examination and discussion.  

Table 2. The data that was aggregated into the top row of Table 1, 
tabulated to show the individual results from each of the 19 different 
ratios of the two algorithms used: n=500 at each ratio. The full table 
is not shown here, because the specific details do not matter. 
Column sums are displayed at the bottom of the table, and 
correspond to the values given in the top row of Table 1.  

 
AA-vs-ZIP (Figure 1). Here there seems to be some 

coherent structure in the BSE delta curve: although AA 
consistently outperforms ZIP, the degree by which it 
beats ZIP seems to attenuate when the Ra is at either 
extreme of its range, and the maximum 
outperformance of AA over ZIP seems to be when 
Ra<10:10, i.e. when AA is in the minority of the 
population. The relevance of this is seen in the TBSE 
delta curve in Fig.2: we saw in Table 1 that ZIP wins on 
aggregate in this set of experiments, but Fig.2 makes 
clear that when AA is in a small minority in TBSE it can 
still outperform ZIP, yet as soon as the ratio of AA 
traders exceeds 50% its dominance disappears and it is 

outperformed by ZIP.  

GDX-vs-ZIC (Figure 2). Here, for both BSE and 
TBSE, the delta curves have a clear coherent structure 
to them, which is something that we do not think has 
been reported before in the literature: we know from 
Vach (2015), Cliff (2019), and Snashall & Cliff (2019) 
that ratio matters, but none of those publications 
reported or explored such strongly coherent 
relationships between ratio and results, between Ra and 
wins. 

 
Figure 1. "Delta Curves" for AA vs ZIP in BSE (left) and TBSE (right). 
This pair of graphs shows the wins data, as was tabulated for AA vs 
ZIC in Table 2: the horizontal axis shows Ra and is labelled with the 
number of AA traders in the ratio; the vertical axis is the value of 
wins.  When wins>0, AA outperforms ZIP, and when wins<0, ZIP 
beats AA. 

Figure 2 shows fairly unambiguously that GDX 
outperforms ZIC when GDX is in the minority, and ZIC 
outperforms GDX when ZIC is in the minority. Figure 3 
also reveals that the qualitative nature of the swing 
from GDX dominance in BSE to ZIC dominance in TBSE 
differs from that from AA to ZIP that was illustrated in 
Figure 1: whereas the two delta plots in Figure 1 are 
markedly different, the two curves in Figure 2 are 
remarkably similar: the TBSE curve could plausibly be 
described as what happens when the BSE curve is 
shifted slightly to the right and slightly down. Also 
notable is that in both BSE and TBSE the maximum 
outperformance of ZIC by GDX happens at roughly a 
ratio of 1:3, and the maximum outperformance of GDX 
by ZICs seems similarly to happen at roughly 3:1. This 
strikes us as curious in that  experience tells us that 
usually in these kind of experiments maxima would 
normally be expected to occur either at the endpoints of 
the scale (i.e. at ratios of 1:19 or 19:1) or near the 
midpoint (i.e. at 10:10) why this is so is something we 
aim to investigate in further work.  

 
Figure 2. Delta curves for GDX vs ZIC; format is the same as in Figure 
1. 

GDX-vs-ZIP (Figure 3): again, there is a clear 
coherence to the delta curves, although the 
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relationship between the BSE and TBSE curves is not as 
similar as that in Figure 2, and not as different as that 
in Figure 1. In a point of similarity with the GDX-vs-ZIC 
curves, again the peak performance of the two 
strategies come at ratios of roughly 3:1 and 1:3 (and, 
again, we do not know why this should be so) but for 
GDX-vs-ZIP the relative performance of the two 
algorithms does not level out to zero near ratio values 
of 10:10 and then cross into underperformance for the 
algorithm that is in the majority; instead in BSE GDX 
pretty consistently outperforms ZIP and in TBSE the 
situation is the inverse: now ZIP is the dominant 
algorithm at almost all ratios, and again the degree of 
dominance falls steadily as the proportion of ZIPs 
increases beyond 1:3). Further work is required to 
understand why these delta curves have this particular 
qualitative shape.  

 
Figure 3. Delta curves for GDX vs ZIP; format is the same as in Figure 
1. 

5. Discussion and Further Work 

One thing that is notable from the delta curves in 
Figures 1, 2, and 3 is that, despite the points of 
similarity highlighted above, the effect that shifting 
from BSE to TBSE has on the delta curves is 
qualitatively different for each pair of trading 
algorithms: the data we have studied thus far reveals no 
conveniently simple patterns that allow us to make a 
priori predictions or generalizations about when 
Algorithm A will outperform Algorithm B. Figure 2 is 
the starkest illustration of this point: recall that GDX 
was developed at IBM TJ Watson Research Labs, was 
preceded by two earlier versions (GD, then MGD), and 
when published was described by IBM as the best-
performing trading algorithm in the then-published 
literature. We do not seek to criticize the IBM team, but 
our results show that, when the conditions are right 
(i.e., when the ratio of GDX:ZIC is in the right range), in 
fact GDX can be consistently out-performed by ZIC. 
Gode & Sunder's ZIC paper had been published six years 
before IBM's GDX paper, and while GDX mixes the 
construction of a probabilistic belief function with 
techniques from dynamic programming, the ZIC 
algorithm takes up one line of code.  

One avenue of further work comes in attempting to 
understand what features, if any, of the trading 
algorithms interact in such a way that they give rise to 
the delta curves that we have plotted here, and the 
extent to which those delta curves are affected by 
changes in other significant factors, such as the 

market's supply and demand schedules. Also, here we 
presented results that focus on four trading algorithms 
that have been used repeatedly in studies of artificial 
trading systems over the past 20 years, but there are 
several other algorithms which could be added into this 
analysis. And, when we're done with analyzing 
interactions between A/B pairs of trading algorithms, 
we can move on to A/B/C triples (in which case the delta 
curves could be plotted as points on a simplex), and 
then on to various ratios of four or five or six different 
algorithms, etc. But as the number of algorithms 
involved in any one comparison increases, so do the 
number of trials required (the combinatorics are 
explosive, and the computational cost even of the 
experiments shown here was measured in days of CPU 
time), and so do the difficulties of visualizing and 
analyzing the results.  

6. Conclusion 

Prior to this paper, anyone reading the trading-
agent literature would have been likely to form the 
opinion that there was widespread agreement that, in 
general, AA beats GDX, GDX beats ZIP, and ZIP beats 
ZIC. Only a careful reading of the literature would reveal 
that many of the relevant results came from single-
threaded simulations. Our results presented here show 
that while the AA>GDX>ZIP>ZIC dominance hierarchy 
may hold true in simple simulations, as soon as real-
time factors matter, i.e. as soon as the various 
algorithms are operating in parallel, the computational 
costs of a sophisticated algorithm such as GDX count 
against it, and it can be outrun by simpler but faster 
algorithms. So, the primary contribution of this paper 
is our demonstration here that the old single-threaded 
dominance hierarchy is not maintained in multi-
threaded TBSE. As Table 1 shows, in A/B comparisons 
on TBSE we have AA beating ZIC, ZIP beating AA, ZIC 
beating GDX, and ZIP beating GDX; results that can be 
summarized as ZIP>AA>ZIC>GDX.  

Our work calls into question not just the truth of 
specific claims of dominance, but also whether it is ever 
worth trying to make such claims at all, because any 
trading-algorithm's performance, and hence 
dominance, is clearly so heavily affected by factors 
exogenous to that trading algorithm, chief of which is 
what other algorithms it is competing against, and in 
what proportion or ratio those different algorithms are 
present in the market: it's a manifestly game-theoretic 
situation, but game theory offers no help here. We 
question whether, in markets that are sufficiently 
realistic to be relevant to the real world, there can ever 
really be a single specific trading algorithm that is 
"dominant", that actually beats all the rest. Hence, we 
conclude with this: if you think your trading algorithm 
really is the dominant one, you have probably tested it 
in simulations that are too simple.  
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