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Abstract

In this paper we present a dynamic stacking problem with uncertainty. We developed a simulation environment, an
optimizer for solving it, and performance measures to determine the success of the optimizer. The problem requires handling
incoming blocks, stacking them efficiently, and meeting deadlines for delivery, while not knowing exactly when blocks will

arrive or when they will be ready for delivery.

The optimizer models the problem as a dynamic Block Relocation Problem and solves it using a branch&bound based
heuristic. The simulation and optimizer run concurrently and the distribution of random variables is not disclosed to the

solver and must, therefore, be estimated.

We study the influence of uncertainty on the solver and show that the degree of uncertainty has a significant impact on the
performance of the overall system. We also experiment with different measures to estimate uncertain arrival times and show
that the choice of measure is important for achieving good performance.
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1. Introduction

Dynamic stacking problems have not yet been covered
widely in the literature, while static problem variants
and solution approaches that solve a given scenario
with minimal relocation effort have been discussed at
lengths. Nevertheless, a multitude of applications in
the real world exist, where uncertainties and dynamic
effects may not be ignored. The domains range from
container stacking and retrieval in harbors to stacking
steel products after casting or rolling. An overview
of uncertainties and dynamic aspects has been given
(Beham et al., 2019). In order to address these as-
pects, stochastic planning models and strategies on

how to handle disruptions are needed. In the context
of dynamic optimization problems (DOP) the applica-
tion of algorithms to optimize decisions at runtime is
called “online solving”, while the overall performance
observed after consecutive applications of online algo-
rithms is called “offline performance” (Nguyen et al.,
2012). The latter is an important criterion in determin-
ing success or failure to control the dynamic problem.
However, this performance is available to an online
solver only in hindsight.

A brief literature review on dynamic stacking prob-
lems respectively stacking problems with uncertainty
is presented in this work. A dynamic container reloca-
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tion problem (DCRP) has been introduced (Akyiiz and
Chung-Yee, 2014). However, the only dynamic aspect
in the DCRP is the rolling planning horizon. There are
no uncertainties, and all events occurring within the
planning horizon are known. The stacking problem
(SP) (Rei and Pedroso, 2013) extends the DCRP by as-
sociating a time window (release, due) to each block.
This time window describes its earliest availability at
a source stack and its latest possible relocation to a
handover stack. The steel stacking problem (SSP) re-
defines a block to be a material, i.e., slab, coil, bloom,
sheet, etc., which gains additional attributes such as
temperature, length, width, height, and weight that
are relevant to a number of stacking constraints (Raggl
et al., 2018). In the SSP two time windows are associ-
ated with each material as there are both, release and
due date, for the source and the handover stack. Ad-
ditionally, the SSP features non-instantaneous crane
movements.

Uncertainties have also been described, for instance
in form of uncertain weights of containers in a port
application (Kang et al., 2006). Also handover priori-
ties may be uncertain, for instance in the online block
relocation problem (BRP) only the next to be retrieved
block is known, while the order of all other blocks is
unknown and a leveling heuristic with a known compet-
itive ratio has been described (Zehendner et al., 2017).
Another work considers time windows for the handover
in which trucks randomly arrive to pick up blocks (Ku
and Arthanari, 2016). In the stochastic container re-
trieval problem blocks are assigned to batches that have
a fixed and known order, but within a batch the order
is random and determined online (Galle et al., 2018).

We published a dynamic stacking problem with un-
certain arrival and retrieval time windows that can only
be solved online (Raggl et al., 2020). We implemented
a simulation, defined challenging benchmark instances
and compared two online solvers for the problem using
the relevant performance indicators. This work, uses
the same dynamic stacking problem and investigates
the effect of increased uncertainty of the arrival rate on
solver performance. We then show effects of address-
ing such uncertainties by using different estimators for
the arrival frequency. Taking such approaches to the
extreme we observe side effects that actually lead to
worse performance.

2. Simulation-based Dynamic Stacking

The dynamic stacking problem that we consider in this
work is composed of three types of stacks at which
blocks may be placed such that they are positioned
right above each other. Only the topmost block at each
stack may be accessed by a crane which may only load
a single block at a time. Blocks have a certain (known)
due date and a certain (unknown) ready date which
precedes the due date. They must reside within the

system until their respective ready date and should
leave the system before their due date.

Arrival stack This stack is served by the upstream pro-
cess, which inserts new blocks to the bottom and
thus acts as a first-in-first-out (FIFO) queue. If
the arrival stack is full, the next block is lost and
the upstream process is suspended.

Buffer stacks These stacks act as a buffer between the
arrival and the handover stack. Each block con-
sumes one unit of height and there is a maximum
height per stack - here it is the same among all
buffer stacks.

Handover stack This stack is filled by the crane and
cleared by the downstream process. It can only
hold one block and thus, the clearing decision is
made immediately upon dropping off a block there,
which is also called a delivery. Such a delivery takes
some time after which the handover stack is ready
again.

This problem is described in form of a simulation
model that is implemented using the Sim# simulation
framework (Beham et al., 2014). Sim# is a process-
based discrete-event simulation framework, where a
process is simply a C# method that manipulates its
local state as well as the simulation’s state.

The dynamic stacking problem is implemented using
a pseudo-realtime simulation environment, meaning
that the advancement of the simulation time may in-
cur a real-world delay. This is useful when the solver
interacting with this dynamic stacking problem should
be tested in a real-world like scenario, i.e., the solver
process runs concurrently to the simulation. However,
the pseudo-realtime simulation may also run in virtual
time, i.e., as fast as possible, in which case a syn-
chronous interaction between simulation and solver
may be achieved. Still, the availability of the decision
within the simulation can be simulated by accounting
for a delay that is equal to the solver’s runtime.

2.1. Processes

The processes within this simulation govern the change
of the system state. In this dynamic stacking problem
there are four processes that we describe here.

1. An upstream process that produces new blocks at
the arrival stack.

2. A block process that will determine the block’s
readiness.

3. A crane process that will execute the crane move-
ments.

4. A downstream process that will clear the handover
stack.

Upstream
The upstream process spawns new blocks at the bottom
of the arrival stack in random intervals. If the arrival



stack is observed to be full after such an interval, that
block is considered to be "waste' and the arrival pro-
cess is suspended. The arrival process is resumed after
the crane picks up a block from the arrival stack and
thus creates room for a new block, which is spawned
again after a random interval. An important parameter
of this process is the arrival rate ARR. We use a log-
normal distribution to model the stochastic of arrivals.
In this experiment, we change the coefficient of vari-
ation of ARR and evaluate the effect on the solver. A
solver may observe the last 100 sampled inter-arrival
times which it can use to generate an estimate of the
uncertainty.

Block

The block process is initiated when a new block is cre-
ated and marks the block ready when its ready date has
passed. An important parameter is the mean customer
required lead time DUE and the mean relative time
span RDY after which it becomes ready. The customer
required lead time will be sampled from a log-normal
distribution with mean DUE and the relative readiness
time will be sampled from a uniform distribution with
mean RDY. The actual readiness time is not disclosed
and thus unknown to a solver.

Crane

The crane process is initiated by the solver. In this
process the moves will be performed according to a
schedule specified by the solver. Before a move is per-
formed it is checked for validity. When an invalid move
is encountered, the crane process skips it and continues
with the next valid move. Moves may become invalid
for a number of reasons, such as forbidden destinations,
i.e., relocation to the arrival stack, violating the height
restrictions and more.

When a new schedule is sent, the crane will abort its
current schedule after completing the move that is cur-
rently in progress. The crane takes some time to move
horizontally between stacks and some time to lower
and raise the hoist in order to pick up or drop off a block.
The longer the distance, the longer it takes for both
directions. The actual time to perform a single move in
one of those directions is described by parameters HOR
and VER for the mean horizontal movement (crane)
and the mean vertical movement (hoist) respectively.
Both HOR and VER are described by log-normal distri-
butions in this work. Again, solvers may observe the
last 100 relocation times and estimate the uncertainty.

Downstream

The downstream process is initiated when the crane
drops-off a block at the handover stack. The handover
stack then becomes unavailable until it is cleared. Dur-
ing this time no new blocks may be delivered. Similar
to the above processes, data about the last 100 clear-
ing intervals are available to the solver for uncertainty
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estimation. The stochastic variable HND describes the
average handover time.

2.2. Performance Measurement

The performance of the described dynamic stacking
problem is described in several dimensions. We de-
scribe some of these in more detail and derive a lexi-
cographic objective function from some of these per-
formances that closely matches with the priorities ob-
served in a comparable real-world scenario. The fol-
lowing key performance indicators (KPIs) are updated
live as the simulation is running. Thus, the KPIs repre-
sent the performance of the system up to the current
simulated time.

Blocked arrival time (BAT) counts the total time that
the arrival process was suspended. The higher
this time, the worse the performance as blocking
the upstream processes may have severe conse-
quences. For instance, when continuously casting
steel, blocking the caster is highly undesirable as
there are long setup and potentially cleaning oper-
ations necessary when restarting.

Total blocks on time (TBT) counts all blocks that have
been delivered before their due date, as well as
those that are not overdue and still at a stack. The
more blocks that have been delivered on time, the
better the performance.

Crane manipulations (CM) counts the total number of
block relocations performed by the crane. Picking
up and dropping off blocks is a critical process
where accidents are more likely to occur. Thus,
the less manipulations are necessary, the better.

Mean service level (MSL) is the relative number of
blocks that are on time among all those that are
delivered.

For comparing solvers, we chose a lexicographic ob-
jective that includes the first three KPIs: (1) minimize
BAT, (2) maximize TBT, (3) minimize CM. This ob-
jective function represents the priorities that we have
observed in real-world cases in steel stacking where
it is of utmost importance to avoid stalling the contin-
uous casting process. Furthermore, it is important to
adhere to the due times as much as possible and also
deliver as much as possible in terms of the total quan-
tity. And third, excessive restacking should be avoided
in order to minimize probabilities of accidents and also
conserve energy and thus crane manipulations are also
to be minimized.

3. Solving the Stacking Problem

The solver receives the world state from the simulation,
translates it into a dynamic Block Relocation Problem
(dBRP), and solves that. Then it uses the dBRP solution
to create a schedule for the crane to execute and sends
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it back to the simulator. While the crane is working
on a schedule we avoid sending another one because,
due to the lack of synchronization between the solver
and the simulation, this easily results in invalid moves.
This means that once a schedule is sent to the crane it
is fixed. To ensure that the solver can react to changes
such as new blocks arriving or becoming ready, we
have to limit the number of moves per schedule. On
the other hand, communicating multiple moves at once
eliminates the communication overhead and leads to
better crane utilization, so we need to balance these
two factors.

The buffer stacks, as well as the arrival stack, are
translated to stacks in the dBRP. The handover stack
is simply the target of any remove moves. The arrival
and handover intervals, as well as the crane move time,
are estimated from the last 100 occurrences observed
by the simulation.

Since the simulation does not dictate an order in
which the blocks should be removed, we have to deter-
mine the handover priorities ourselves. There is a large
number of ways to assign priorities to blocks. We de-
termine the handover priorities by first sorting all the
blocks using a lexicographic ordering of four factors:

Is the block ready?

Can it be put on the handover in time?
Time until due date?

How many blocks are above it in the stack?

PWN e

Given a list of blocks sorted this way, we could use
the index in the list as the priority, but using unique
priorities is quite limiting. Especially for blocks with
a due date in the far future, it does not make sense to
force the solver to use a strict removal order, because
this order is likely to change anyway. So to determine
the priorities we start with priority zero and iterate
over the blocks in the list. Every time one of our four
factors differs from a block to the previous one, we
increment the priority counter. To model the increasing
uncertainty as time goes on, we consider due times of
two blocks to be equal if they differ by less then 20%.

The biggest difference to the static BRP is that blocks
on the arrival stack must be taken from there before
it runs full and is blocked. Additionally to the usual
removal and relocate moves, we need to perform inser-
tion moves, that take a block from the arrival stack and
put it on a buffer or handover stack. These insertions
generate a conflict between our three objectives. In
respect to blocked arrival time (BAT), it seems to make
sense to clear the arrival stack as soon as possible. But
filling up the buffer stacks, by immediately moving
arriving blocks to a buffer stack, also leads to more
relocations (CM) needed to remove blocks that become
ready. This leads to delayed deliveries and a decrease
in TBT. It is therefore important, to perform each in-
sertion as late as possible, to reduce the pressure on
the buffer stacks, but early enough to avoid blocking

the arrival stack.

To get the possible moves for every dBRP state we
use the following procedure. First, we calculate the
latest time the next insertion move can be performed.
It is the time of the previous arrival plus the number
of free spaces on the arrival stack times the estimated
arrival time. If there is free space on the arrival stack
and we have time for at least two crane moves, before
we need to do an insertion, we will not perform an
insertion yet. If we detect that doing an insertion now
will prevent us from performing the next removal we do
not allow the insertion. Otherwise, we add all insertion
moves to the list of possible moves. If there is enough
free space in the buffer stacks, we force the solver to
perform the insertion by not adding any other moves.
If we are not forced to do an insertion we look for
remove moves and immediately return those if there
are any. If there are neither insertions nor removals,
we need to perform relocations. We consider so-called
safe moves, enabling safe and forced moves known
from the static BRP (Tricoire et al., 2018), and also use
the same schema for prioritizing possible moves as in
the static case (Raggl et al., 2018).

We solve the dBRP model outlined above, using a
branch&bound based heuristic algorithm with the num-
ber of crane manipulations (relocations) as the objec-
tive. Blocked arrival time and total blocks on time are
only optimized indirectly. BAT by not allowing other
moves when an insertion is needed and the due times
are respected because they are used to determine the
block priorities. It would be possible to optimize for
those KPIs more directly by including them in the objec-
tive, but that means we cannot use lower bounds from
the BRP which speed up search significantly (Tricoire
et al., 2018). The crane schedule is constructed using
at most the first two moves from the dBRP solution. If
we encounter a removal, where either the handover or
the block is not yet ready, we stop there.

4. Results

As discussed above, the critical decision of when to
perform insertion moves is based on estimates for the
inter-arrival and crane move times. Both of these are
uncertain and the distribution and its parameters are
unknown to the solver. But the simulation provides the
last 100 measurements of both times, so this informa-
tion is used. There is a number of possible measures
we can use to estimate the times, e.g., mean, median,
min, max or quartile. We therefore want to investigate
two questions:

+ How does the solver perform under different degrees
of uncertainty?

- How does the choice of estimator influence the solver
performance?

To answer these questions we generate random prob-



Table 1. Simulation model variables
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List of random variables

ARR arrival rate

DUE due dates, i.e., required lead time

RDY ready dates (relative to due date)

HOR crane movements (horizontal)

VER hoist movements (vertical)

HND handover intervals

Fixed parameters

E[RDY] =0.75 Expected readiness factor

CV[RDY] = 0.2 Coefficient of variation of readiness factor

E[HOR] =2.0 Expected crane move time along whole runway
CV[HOR] = 0.2 Coefficient of variation of crane move time along whole runway
E[VER] =0.5 Expected hoist move time from top to ground
CV[VER] = 0.2 Coefficient of variation of hoist move time from top to ground
E[HND] =5.0 Expected handover interval

CV[HND] =o0.2 Coefficient of variation of handover interval

|BI =6 Number of buffer stacks b € B

H, =6 Maximum height of buffer stack b

H, =4 Maximum height of arrival stack a

E[ARR] =0.07 Expected arrival rate

CV[ARR] € {0.25,0.5,0.75,1.0}  Coefficient of variation of the arrival rate

E[DUE] = 480 Mean customer required lead time

CV[DUE] = 0.2 Coefficient of variation of customer required lead time

lem instances using the parameters shown in Table 1.
In order to retain interpretability of the results we
choose to only change the coefficient of variation of
the arrival rate. All other random variables get a fixed
coefficient of variation of 0.2. To estimate arrival time
and move time we use the mean of the observed values.
We use 4 different coefficents of variation, namely 0.25,
0.5, 0.75 and 1.0 and for each of these settings we gen-
erate 40 random instances for a total of 160 instances.
The solver gets a time-limit of 250 milliseconds to solve
each dBRP instance. All experiments were performed
on a Lenovo ThinkStation P520 with an Intel Xenon 8
Core 3.7Ghz running Windows 10. The simulation is
written in C# and executed using dotnet core 3.0 while
the solver is written in Rust and compiled using rustc
1.43.

Figure 1 shows that the more we increase the coeffi-
cient of variation on the arrival time, the more blocked
arrival time (BAT) we can observe. This makes sense
because whether or not an insertion move should be
performed is decided based on the estimated inter-
arrival time and the crane-move time. If the solver
overestimates the time until the next insertion move
is needed, the arrival stack can get blocked. This is in-
creasingly likely as the variance increases since we use
the mean of the observed arrival times as our estimate.
Since blocking the arrival stack leads to fewer blocks
being produced, both, the total blocks on time (TBT),
as well as the number of crane moves (CM), decreases.
A higher variation in arrival frequency does however
not significantly affect the service level (MSL).

In order to reduce the likelihood of overestimating
the time it takes, for the next block to arrive, we can
change the measure we use for estimating the inter-
arrival time. We experimented with replacing the mean

with the first quartile and the minimum of the observed
values. We did not change anything else and used the
same problem instances as before. Figure 2 shows the
average and standard deviation of our KPIs when using
the three different estimates. Using the first quartile
gives, as expected, a modest improvement over the
mean in terms of BAT as the uncertainty increases.
This improvement is achieved by focusing more on
insertions and less on removals and we can see this
by looking at the mean service level. While the MSL is
reduced by using the first quartile as an estimator, the
TBT does not show a difference between the quartile
and the mean. This is because using the quartile means
blocking less and therefore producing more blocks.

Estimating the arrival time using the observed min-
imum is even more conservative than using the first
quartile and so we would have expected the BAT to
be even lower. Instead, we observe that the arrival is
blocked much longer as the uncertainty rises. Addi-
tionally, it is not as consistent between instances. The
decline in service level is again explained by the solver
being forced to perform insertion moves much earlier.
While the lower TBT is caused by both this shift in focus
as well as less overall blocks produced due to the higher
BAT.

To explain why using the minimum leads to a higher
BAT when we expected it to lead to less blocking, we
turn to Figure 3. There, we see both, the BAT as well as
the buffer fill-level over a single representative prob-
lem instance, with the highest level of variance on the
arrival intervals we studied (CV[ARR] = 1.0). The BAT
at the end is highest for minimum, lower for mean and
lowest for the first quartile just like we have seen in
Figure 2. But crucially, the number of times the arrival
is blocked is lowest for minimum and highest for the
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mean. So the real question is: Why does using the min-
imum lead to blocking the arrival for extended periods?
The answer lies in the increased buffer fill levels, that
are caused by eagerly taking blocks from the arrival
stack. What can happen is that all buffer stacks are
full and none of the top blocks are ready. This causes
gridlock and we have to block the arrival stack until
one of the top blocks becomes ready.

Figure 4 shows an example out of the simulation run
depicted in Figure 3, where not all the stacks are full
but blocking the arrival is still unavoidable. Only the
two yellow blocks are ready for delivery and the next
block to be removed is B64. The number in parenthesis
next to the name of each stack is the remaining capacity
for this stack. If we were to insert B102 now, the four
blocks above B64 have nowhere to go because then
the combined remaining capacity of buffer 1 and 6
is only three. This would generate the deadlock we
described before. So our only option is to block the
arrival until we performed all the necessary relocations
and the removal. Situations like this do not happen as
easily when using the mean as our estimate because the
solver can focus on removals and manages to keep the
buffer utilization down. Using the first quartile causes
higher buffer utilization but the solver still manages to
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remove enough blocks to avoid disaster. But constantly
underestimating the time until the next block arrives
forces the solver to prefer an insertion over a removal
which is fine when there is enough buffer capacity
available but can be a critical mistake if not.

5. Conclusions

We developed a simulation environment for a dynamic
stacking problem with uncertainty based on a real-
world problem in the steel industry. This enabled us
to show that increasing the variance in the arrival in-
terval has a large impact on the performance of our
solver. For the real-world problem this means that
providing the optimizer with more precise information
about the arrival times can enable the solver to improve
system performance. If that is not possible we showed
that we can combat the higher uncertainty by using a
more conservative estimate of our random variable. In
the case of the arrival times switching the estimator
from using the mean to using the first quartile was
shown to reduce the time the arrival stack was blocked.
We also showed that being overly cautious and using
the minimum as an estimate in an attempt to prevent
blocking the arrival stack backfires because it means
we are running into the capacity limits of our buffer
stacks. The solver must carefully balance insertions
and removals to achieve good performance and this
balance also depends on the degree of uncertainty. It is
also very important for the robustness of the solver to
handle edge-cases like the one we showed in Figure 4.

In this paper we varied the coefficient of variation
and method of estimation of only a single random vari-
able out of six and still observed complex interactions
between the simulation, the solver and our KPIs. There
is still a lot of research to be done on this fascinating
problem.
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