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Abstract

In this paper we present a dynamic stacking problem with uncertainty. We developed a simulation environment, an
optimizer for solving it, and performance measures to determine the success of the optimizer. The problem requires handling
incoming blocks, stacking them efficiently, and meeting deadlines for delivery, while not knowing exactly when blocks will
arrive or when they will be ready for delivery.
The optimizer models the problem as a dynamic Block Relocation Problem and solves it using a branch&bound based
heuristic. The simulation and optimizer run concurrently and the distribution of random variables is not disclosed to the
solver and must, therefore, be estimated.
We study the influence of uncertainty on the solver and show that the degree of uncertainty has a significant impact on the
performance of the overall system. We also experiment with different measures to estimate uncertain arrival times and show
that the choice of measure is important for achieving good performance.
Keywords: dynamic optimization problem;stacking;uncertainty

1. Introduction

Dynamic stacking problems have not yet been coveredwidely in the literature, while static problem variantsand solution approaches that solve a given scenariowith minimal relocation effort have been discussed atlengths. Nevertheless, a multitude of applications inthe real world exist, where uncertainties and dynamiceffects may not be ignored. The domains range fromcontainer stacking and retrieval in harbors to stackingsteel products after casting or rolling. An overviewof uncertainties and dynamic aspects has been given(Beham et al., 2019). In order to address these as-pects, stochastic planning models and strategies on

how to handle disruptions are needed. In the contextof dynamic optimization problems (DOP) the applica-tion of algorithms to optimize decisions at runtime iscalled “online solving”, while the overall performanceobserved after consecutive applications of online algo-rithms is called “offline performance” (Nguyen et al.,2012). The latter is an important criterion in determin-ing success or failure to control the dynamic problem.However, this performance is available to an onlinesolver only in hindsight.
A brief literature review on dynamic stacking prob-lems respectively stacking problems with uncertaintyis presented in this work. A dynamic container reloca-
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tion problem (DCRP) has been introduced (Akyüz andChung-Yee, 2014). However, the only dynamic aspectin the DCRP is the rolling planning horizon. There areno uncertainties, and all events occurring within theplanning horizon are known. The stacking problem(SP) (Rei and Pedroso, 2013) extends the DCRP by as-sociating a time window (release, due) to each block.This time window describes its earliest availability ata source stack and its latest possible relocation to ahandover stack. The steel stacking problem (SSP) re-defines a block to be a material, i.e., slab, coil, bloom,sheet, etc., which gains additional attributes such astemperature, length, width, height, and weight thatare relevant to a number of stacking constraints (Ragglet al., 2018). In the SSP two time windows are associ-ated with each material as there are both, release anddue date, for the source and the handover stack. Ad-ditionally, the SSP features non-instantaneous cranemovements.
Uncertainties have also been described, for instancein form of uncertain weights of containers in a portapplication (Kang et al., 2006). Also handover priori-ties may be uncertain, for instance in the online blockrelocation problem (BRP) only the next to be retrievedblock is known, while the order of all other blocks isunknown and a leveling heuristic with a known compet-itive ratio has been described (Zehendner et al., 2017).Another work considers time windows for the handoverin which trucks randomly arrive to pick up blocks (Kuand Arthanari, 2016). In the stochastic container re-trieval problem blocks are assigned to batches that havea fixed and known order, but within a batch the orderis random and determined online (Galle et al., 2018).
We published a dynamic stacking problem with un-certain arrival and retrieval time windows that can onlybe solved online (Raggl et al., 2020). We implementeda simulation, defined challenging benchmark instancesand compared two online solvers for the problem usingthe relevant performance indicators. This work, usesthe same dynamic stacking problem and investigatesthe effect of increased uncertainty of the arrival rate onsolver performance. We then show effects of address-ing such uncertainties by using different estimators forthe arrival frequency. Taking such approaches to theextreme we observe side effects that actually lead toworse performance.

2. Simulation-based Dynamic Stacking

The dynamic stacking problem that we consider in thiswork is composed of three types of stacks at whichblocks may be placed such that they are positionedright above each other. Only the topmost block at eachstack may be accessed by a crane which may only loada single block at a time. Blocks have a certain (known)due date and a certain (unknown) ready date whichprecedes the due date. They must reside within the

system until their respective ready date and shouldleave the system before their due date.
Arrival stack This stack is served by the upstream pro-cess, which inserts new blocks to the bottom andthus acts as a first-in-first-out (FIFO) queue. Ifthe arrival stack is full, the next block is lost andthe upstream process is suspended.
Buffer stacks These stacks act as a buffer between thearrival and the handover stack. Each block con-sumes one unit of height and there is a maximumheight per stack - here it is the same among allbuffer stacks.
Handover stack This stack is filled by the crane andcleared by the downstream process. It can onlyhold one block and thus, the clearing decision ismade immediately upon dropping off a block there,which is also called a delivery. Such a delivery takessome time after which the handover stack is readyagain.

This problem is described in form of a simulationmodel that is implemented using the Sim# simulationframework (Beham et al., 2014). Sim# is a process-based discrete-event simulation framework, where aprocess is simply a C# method that manipulates itslocal state as well as the simulation’s state.The dynamic stacking problem is implemented usinga pseudo-realtime simulation environment, meaningthat the advancement of the simulation time may in-cur a real-world delay. This is useful when the solverinteracting with this dynamic stacking problem shouldbe tested in a real-world like scenario, i.e., the solverprocess runs concurrently to the simulation. However,the pseudo-realtime simulation may also run in virtualtime, i.e., as fast as possible, in which case a syn-chronous interaction between simulation and solvermay be achieved. Still, the availability of the decisionwithin the simulation can be simulated by accountingfor a delay that is equal to the solver’s runtime.
2.1. Processes

The processes within this simulation govern the changeof the system state. In this dynamic stacking problemthere are four processes that we describe here.
1. An upstream process that produces new blocks atthe arrival stack.2. A block process that will determine the block’sreadiness.3. A crane process that will execute the crane move-ments.4. A downstream process that will clear the handoverstack.
UpstreamThe upstream process spawns new blocks at the bottomof the arrival stack in random intervals. If the arrival
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stack is observed to be full after such an interval, thatblock is considered to be "waste" and the arrival pro-cess is suspended. The arrival process is resumed afterthe crane picks up a block from the arrival stack andthus creates room for a new block, which is spawnedagain after a random interval. An important parameterof this process is the arrival rate ARR. We use a log-normal distribution to model the stochastic of arrivals.In this experiment, we change the coefficient of vari-ation of ARR and evaluate the effect on the solver. Asolver may observe the last 100 sampled inter-arrivaltimes which it can use to generate an estimate of theuncertainty.
Block
The block process is initiated when a new block is cre-ated and marks the block ready when its ready date haspassed. An important parameter is the mean customerrequired lead time DUE and the mean relative timespan RDY after which it becomes ready. The customerrequired lead time will be sampled from a log-normaldistribution with mean DUE and the relative readinesstime will be sampled from a uniform distribution withmean RDY. The actual readiness time is not disclosedand thus unknown to a solver.
Crane
The crane process is initiated by the solver. In thisprocess the moves will be performed according to aschedule specified by the solver. Before a move is per-formed it is checked for validity. When an invalid moveis encountered, the crane process skips it and continueswith the next valid move. Moves may become invalidfor a number of reasons, such as forbidden destinations,i.e., relocation to the arrival stack, violating the heightrestrictions and more.

When a new schedule is sent, the crane will abort itscurrent schedule after completing the move that is cur-rently in progress. The crane takes some time to movehorizontally between stacks and some time to lowerand raise the hoist in order to pick up or drop off a block.The longer the distance, the longer it takes for bothdirections. The actual time to perform a single move inone of those directions is described by parameters HORand VER for the mean horizontal movement (crane)and the mean vertical movement (hoist) respectively.Both HOR and VER are described by log-normal distri-butions in this work. Again, solvers may observe thelast 100 relocation times and estimate the uncertainty.
Downstream
The downstream process is initiated when the cranedrops-off a block at the handover stack. The handoverstack then becomes unavailable until it is cleared. Dur-ing this time no new blocks may be delivered. Similarto the above processes, data about the last 100 clear-ing intervals are available to the solver for uncertainty

estimation. The stochastic variable HND describes theaverage handover time.
2.2. Performance Measurement

The performance of the described dynamic stackingproblem is described in several dimensions. We de-scribe some of these in more detail and derive a lexi-cographic objective function from some of these per-formances that closely matches with the priorities ob-served in a comparable real-world scenario. The fol-lowing key performance indicators (KPIs) are updatedlive as the simulation is running. Thus, the KPIs repre-sent the performance of the system up to the currentsimulated time.
Blocked arrival time (BAT) counts the total time thatthe arrival process was suspended. The higherthis time, the worse the performance as blockingthe upstream processes may have severe conse-quences. For instance, when continuously castingsteel, blocking the caster is highly undesirable asthere are long setup and potentially cleaning oper-ations necessary when restarting.
Total blocks on time (TBT) counts all blocks that havebeen delivered before their due date, as well asthose that are not overdue and still at a stack. Themore blocks that have been delivered on time, thebetter the performance.
Crane manipulations (CM) counts the total number ofblock relocations performed by the crane. Pickingup and dropping off blocks is a critical processwhere accidents are more likely to occur. Thus,the less manipulations are necessary, the better.
Mean service level (MSL) is the relative number ofblocks that are on time among all those that aredelivered.

For comparing solvers, we chose a lexicographic ob-jective that includes the first three KPIs: (1) minimizeBAT, (2) maximize TBT, (3) minimize CM. This ob-jective function represents the priorities that we haveobserved in real-world cases in steel stacking whereit is of utmost importance to avoid stalling the contin-uous casting process. Furthermore, it is important toadhere to the due times as much as possible and alsodeliver as much as possible in terms of the total quan-tity. And third, excessive restacking should be avoidedin order to minimize probabilities of accidents and alsoconserve energy and thus crane manipulations are alsoto be minimized.

3. Solving the Stacking Problem
The solver receives the world state from the simulation,translates it into a dynamic Block Relocation Problem(dBRP), and solves that. Then it uses the dBRP solutionto create a schedule for the crane to execute and sends
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it back to the simulator. While the crane is workingon a schedule we avoid sending another one because,due to the lack of synchronization between the solverand the simulation, this easily results in invalid moves.This means that once a schedule is sent to the crane itis fixed. To ensure that the solver can react to changessuch as new blocks arriving or becoming ready, wehave to limit the number of moves per schedule. Onthe other hand, communicating multiple moves at onceeliminates the communication overhead and leads tobetter crane utilization, so we need to balance thesetwo factors.
The buffer stacks, as well as the arrival stack, aretranslated to stacks in the dBRP. The handover stackis simply the target of any remove moves. The arrivaland handover intervals, as well as the crane move time,are estimated from the last 100 occurrences observedby the simulation.
Since the simulation does not dictate an order inwhich the blocks should be removed, we have to deter-mine the handover priorities ourselves. There is a largenumber of ways to assign priorities to blocks. We de-termine the handover priorities by first sorting all theblocks using a lexicographic ordering of four factors:

1. Is the block ready?2. Can it be put on the handover in time?3. Time until due date?4. How many blocks are above it in the stack?
Given a list of blocks sorted this way, we could usethe index in the list as the priority, but using uniquepriorities is quite limiting. Especially for blocks witha due date in the far future, it does not make sense toforce the solver to use a strict removal order, becausethis order is likely to change anyway. So to determinethe priorities we start with priority zero and iterateover the blocks in the list. Every time one of our fourfactors differs from a block to the previous one, weincrement the priority counter. To model the increasinguncertainty as time goes on, we consider due times oftwo blocks to be equal if they differ by less then 20%.

The biggest difference to the static BRP is that blockson the arrival stack must be taken from there beforeit runs full and is blocked. Additionally to the usualremoval and relocate moves, we need to perform inser-tion moves, that take a block from the arrival stack andput it on a buffer or handover stack. These insertionsgenerate a conflict between our three objectives. Inrespect to blocked arrival time (BAT), it seems to makesense to clear the arrival stack as soon as possible. Butfilling up the buffer stacks, by immediately movingarriving blocks to a buffer stack, also leads to morerelocations (CM) needed to remove blocks that becomeready. This leads to delayed deliveries and a decreasein TBT. It is therefore important, to perform each in-sertion as late as possible, to reduce the pressure onthe buffer stacks, but early enough to avoid blocking

the arrival stack.
To get the possible moves for every dBRP state weuse the following procedure. First, we calculate thelatest time the next insertion move can be performed.It is the time of the previous arrival plus the numberof free spaces on the arrival stack times the estimatedarrival time. If there is free space on the arrival stackand we have time for at least two crane moves, beforewe need to do an insertion, we will not perform aninsertion yet. If we detect that doing an insertion nowwill prevent us from performing the next removal we donot allow the insertion. Otherwise, we add all insertionmoves to the list of possible moves. If there is enoughfree space in the buffer stacks, we force the solver toperform the insertion by not adding any other moves.If we are not forced to do an insertion we look forremove moves and immediately return those if thereare any. If there are neither insertions nor removals,we need to perform relocations. We consider so-calledsafe moves, enabling safe and forced moves knownfrom the static BRP (Tricoire et al., 2018), and also usethe same schema for prioritizing possible moves as inthe static case (Raggl et al., 2018).
We solve the dBRP model outlined above, using abranch&bound based heuristic algorithm with the num-ber of crane manipulations (relocations) as the objec-tive. Blocked arrival time and total blocks on time areonly optimized indirectly. BAT by not allowing othermoves when an insertion is needed and the due timesare respected because they are used to determine theblock priorities. It would be possible to optimize forthose KPIs more directly by including them in the objec-tive, but that means we cannot use lower bounds fromthe BRP which speed up search significantly (Tricoireet al., 2018). The crane schedule is constructed usingat most the first two moves from the dBRP solution. Ifwe encounter a removal, where either the handover orthe block is not yet ready, we stop there.

4. Results

As discussed above, the critical decision of when toperform insertion moves is based on estimates for theinter-arrival and crane move times. Both of these areuncertain and the distribution and its parameters areunknown to the solver. But the simulation provides thelast 100 measurements of both times, so this informa-tion is used. There is a number of possible measureswe can use to estimate the times, e.g., mean, median,min, max or quartile. We therefore want to investigatetwo questions:
• How does the solver perform under different degreesof uncertainty?• How does the choice of estimator influence the solverperformance?

To answer these questions we generate random prob-



Raggl et al. | 197

Table 1. Simulation model variables
List of random variables
ARR arrival rate
DUE due dates, i.e., required lead time
RDY ready dates (relative to due date)
HOR crane movements (horizontal)
VER hoist movements (vertical)
HND handover intervals
Fixed parameters
E[RDY] = 0.75 Expected readiness factor
CV[RDY] = 0.2 Coefficient of variation of readiness factor
E[HOR] = 2.0 Expected crane move time along whole runway
CV[HOR] = 0.2 Coefficient of variation of crane move time along whole runway
E[VER] = 0.5 Expected hoist move time from top to ground
CV[VER] = 0.2 Coefficient of variation of hoist move time from top to ground
E[HND] = 5.0 Expected handover interval
CV[HND] = 0.2 Coefficient of variation of handover interval
|B| = 6 Number of buffer stacks b ∈ B
Hb = 6 Maximum height of buffer stack b
Ha = 4 Maximum height of arrival stack a
E[ARR] = 0.07 Expected arrival rate
CV[ARR] ∈ {0.25, 0.5, 0.75, 1.0} Coefficient of variation of the arrival rate
E[DUE] = 480 Mean customer required lead time
CV[DUE] = 0.2 Coefficient of variation of customer required lead time

lem instances using the parameters shown in Table 1.In order to retain interpretability of the results wechoose to only change the coefficient of variation ofthe arrival rate. All other random variables get a fixedcoefficient of variation of 0.2. To estimate arrival timeand move time we use the mean of the observed values.We use 4 different coefficents of variation, namely 0.25,0.5, 0.75 and 1.0 and for each of these settings we gen-erate 40 random instances for a total of 160 instances.The solver gets a time-limit of 250 milliseconds to solveeach dBRP instance. All experiments were performedon a Lenovo ThinkStation P520 with an Intel Xenon 8Core 3.7Ghz running Windows 10. The simulation iswritten in C# and executed using dotnet core 3.0 whilethe solver is written in Rust and compiled using rustc1.43.
Figure 1 shows that the more we increase the coeffi-cient of variation on the arrival time, the more blockedarrival time (BAT) we can observe. This makes sensebecause whether or not an insertion move should beperformed is decided based on the estimated inter-arrival time and the crane-move time. If the solveroverestimates the time until the next insertion moveis needed, the arrival stack can get blocked. This is in-creasingly likely as the variance increases since we usethe mean of the observed arrival times as our estimate.Since blocking the arrival stack leads to fewer blocksbeing produced, both, the total blocks on time (TBT),as well as the number of crane moves (CM), decreases.A higher variation in arrival frequency does howevernot significantly affect the service level (MSL).
In order to reduce the likelihood of overestimatingthe time it takes, for the next block to arrive, we canchange the measure we use for estimating the inter-arrival time. We experimented with replacing the mean

with the first quartile and the minimum of the observedvalues. We did not change anything else and used thesame problem instances as before. Figure 2 shows theaverage and standard deviation of our KPIs when usingthe three different estimates. Using the first quartilegives, as expected, a modest improvement over themean in terms of BAT as the uncertainty increases.This improvement is achieved by focusing more oninsertions and less on removals and we can see thisby looking at the mean service level. While the MSL isreduced by using the first quartile as an estimator, theTBT does not show a difference between the quartileand the mean. This is because using the quartile meansblocking less and therefore producing more blocks.
Estimating the arrival time using the observed min-imum is even more conservative than using the firstquartile and so we would have expected the BAT tobe even lower. Instead, we observe that the arrival isblocked much longer as the uncertainty rises. Addi-tionally, it is not as consistent between instances. Thedecline in service level is again explained by the solverbeing forced to perform insertion moves much earlier.While the lower TBT is caused by both this shift in focusas well as less overall blocks produced due to the higherBAT.
To explain why using the minimum leads to a higherBAT when we expected it to lead to less blocking, weturn to Figure 3. There, we see both, the BAT as well asthe buffer fill-level over a single representative prob-lem instance, with the highest level of variance on thearrival intervals we studied (CV[ARR] = 1.0). The BATat the end is highest for minimum, lower for mean andlowest for the first quartile just like we have seen inFigure 2. But crucially, the number of times the arrivalis blocked is lowest for minimum and highest for the
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Figure 1. Solver performance with different coefficients of variation for the arrival frequency.
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Figure 3. Blocked arrival time and buffer utilization over time for aninstance with high variance in the arrival times

mean. So the real question is: Why does using the min-imum lead to blocking the arrival for extended periods?The answer lies in the increased buffer fill levels, thatare caused by eagerly taking blocks from the arrivalstack. What can happen is that all buffer stacks arefull and none of the top blocks are ready. This causesgridlock and we have to block the arrival stack untilone of the top blocks becomes ready.
Figure 4 shows an example out of the simulation rundepicted in Figure 3, where not all the stacks are fullbut blocking the arrival is still unavoidable. Only thetwo yellow blocks are ready for delivery and the nextblock to be removed is B64. The number in parenthesisnext to the name of each stack is the remaining capacityfor this stack. If we were to insert B102 now, the fourblocks above B64 have nowhere to go because thenthe combined remaining capacity of buffer 1 and 6is only three. This would generate the deadlock wedescribed before. So our only option is to block thearrival until we performed all the necessary relocationsand the removal. Situations like this do not happen aseasily when using the mean as our estimate because thesolver can focus on removals and manages to keep thebuffer utilization down. Using the first quartile causeshigher buffer utilization but the solver still manages to

remove enough blocks to avoid disaster. But constantlyunderestimating the time until the next block arrivesforces the solver to prefer an insertion over a removalwhich is fine when there is enough buffer capacityavailable but can be a critical mistake if not.

5. Conclusions

We developed a simulation environment for a dynamicstacking problem with uncertainty based on a real-world problem in the steel industry. This enabled usto show that increasing the variance in the arrival in-terval has a large impact on the performance of oursolver. For the real-world problem this means thatproviding the optimizer with more precise informationabout the arrival times can enable the solver to improvesystem performance. If that is not possible we showedthat we can combat the higher uncertainty by using amore conservative estimate of our random variable. Inthe case of the arrival times switching the estimatorfrom using the mean to using the first quartile wasshown to reduce the time the arrival stack was blocked.We also showed that being overly cautious and usingthe minimum as an estimate in an attempt to preventblocking the arrival stack backfires because it meanswe are running into the capacity limits of our bufferstacks. The solver must carefully balance insertionsand removals to achieve good performance and thisbalance also depends on the degree of uncertainty. It isalso very important for the robustness of the solver tohandle edge-cases like the one we showed in Figure 4.
In this paper we varied the coefficient of variationand method of estimation of only a single random vari-able out of six and still observed complex interactionsbetween the simulation, the solver and our KPIs. Thereis still a lot of research to be done on this fascinatingproblem.
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