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Abstract 
The need to determine the root-mean-square values of alternating signals often arises during the circuit simulation of 
electronic devices. In this paper, there is introduced a digital algorithm for the direct estimation (measurement) of the root-
mean-square value of deterministic and random signals of arbitrary shape for the current signal sampling over the set time 
interval. It requires the minimum number of simple arithmetic operations while generating the result and ensures a high 
degree of estimation accuracy. Simulation is then carried out demonstrating the high efficiency of the proposed algorithm. 
There are analyzed the characteristics of the resulting estimate within a wide frequency range of the measured signals. It is 
shown that the algorithm can be software-implemented and then it will be a part of an application package, and it also can be 
hardware-implemented and then one uses the microprocessor system or the field programmable gate arrays. 
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1. Introduction 

The root-mean-square (RMS) value of the signal 
(current or voltage) is an energy estimate of its level 
and is determined as the square root of its power. If 
the processed signal is a centered random process, 
then its RMS value is equal to the signal dispersion 
(Kasatkin and Nemtsov, 1986; Poularikas, 2000; Sklar, 
2017). Estimating (measuring) the RMS signal value is 
a common task in various areas of electronic 
engineering including circuit simulation. For example, 

simulators of measuring devices (multimeters) are the 
parts of the software packages such as MultiSIM 
(Herniter, 2003) and TINA-TI (Texas Instruments, 
2008).  

In the general case, determining the RMS value of a 
signal requires integrating its square at the set interval 
corresponding to the repetition signal period. If the 
signal shape and parameters are known, then the 
desired RMS value is calculated by the well-known 
formulas. If the signal has a complex (non-harmonic) 
shape and its period is changing or unknown, then the 
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computational procedure is more difficult to 
implement in practice. In this case, the development 
of the algorithm for determining the RMS value of a 
signal is only then relevant, if it involves a minimum 
number of simple arithmetic operations and provides 
the required measurement accuracy. 

2. Calculating the Root-Mean-Square Signal 
Value 

The power of the periodic signal  is determined by 
the expression Kasatkin and Nemtsov, 1986; 
Poularikas, 2000) 

 
(1) 

where  is the signal period, and  is any arbitrary 
reference time of integration upon which the value of 
the integral (1) does not depend. 

The RMS value of the periodic signal (current or 

voltage)  of an arbitrary shape is determined by the 
expression (Northrop 2005, Bird 2007) 

 

(2) 

In order to calculate the value (2), it is necessary to 
know the signal period, but that is not always 
realizable, especially, when the signal frequency 
changes during measurements. 

For an arbitrary integration interval T, firstly, one 
defines the value 

 

(3) 

It coincides with (1) when T is a multiple of  and, in 

the general case, depends upon T and . The value  
can be considered as the estimate of the RMS value of a 
signal and its calculation does not require the 

knowledge of . 

If the harmonic signal 

 (4) 

is processed, then from (3) one gets 

        (5) 

where  is the exact RMS value of the 
periodic signal (Kasatkin and Nemtsov, 1986). In (4), 

the notations are: S is the amplitude,  is the 
frequency, φ is the initial phase of the signal. As the 
product of trigonometric functions in (5) is not greater 
than unity in absolute value, the relative error of the 
estimate (5) of the integral (3) is determined by the 
inequality 

 
(6) 

where  is the number of signal periods 

within the integration interval,  is an integer part. 

In Figure 1a, there is shown the dependence of  

(6) upon the normalized integration time . In 
particular, it follows that this error is less than 0.8% 

under  already. In Figure 1b, one can see how the 
error of the harmonic RMS value estimate (5) changes 

under  and . Similar results also hold for 
other signal parameter values. Thus, the estimate (3) 
of the RMS value does not require knowledge of the 
signal period and provides a sufficiently high accuracy 

when . 

If N signal samples  following at the interval  are 

available that implies that , then the integral 
(3) can be calculated by means of the method of 
rectangles (Korn and Korn, 2000) as follows 

 
a) 

 
b) 

Figure 1. The error of the standard estimate of the harmonic root-
mean-square value 

 

(7) 
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It should be noted that numerical integration 
methods (Korn and Korn, 2000) require the 

generation of  samples over the signal 
period. Thus, when measuring the RMS value of a 

signal, it is necessary to take  samples 
from the output of the analog-to-digital converter; 
and the measurement accuracy will increase with N. 
Therefore, in order to effectively implement the 
estimate (7), a fast computational procedure should be 
used with the minimum number of arithmetic 
operations. It is proposed to apply such a procedure 
that is based on the general approach of fast digital 
signal processing described by Chernoyarov et al 
(2018, 2019). 

3. The Algorithm for Measuring the Root-
Mean-Square Value of a Signal 

3.1. The Structure of the Algorithm for Measuring 
the Root-Mean-Square Value of a Signal 

In Figure 2a, there is presented the block diagram of 
the algorithm (procedure) for determining the RMS 
signal value using received samples. Here the 

operation  means calculating the module of 
the integer number a in terms of the base b. One cane 
see that this algorithm includes processing of the 

general sequence formed by L samples of the signal , 
and, as a result, the RMS signal value is then 

determined for N current samples ( ). When 
initializing the measurement algorithm, the zero 

values of  are set in the memory cells , 

, whose number is equal to  or 

. 

Within the processing cycle, each sample is squared 
and then, during n accumulation cycles, where 

, the sums are calculated of 2, 4, 8, ... squares 
of the neighboring samples in (7), and the RMS signal 

value is then determined. Under  there 

are required  operations of summation, while 

under  –  such operations, 
respectively. It should be noted that when generating 
the addresses of memory cells, the integer values are 

calculated modulo  in addition to summing. It 
leads to additional costs. 

In Figure 2b, the algorithm for determining the 
RMS signal value is presented, in which the operations 

of calculating integers modulo  are used. It can be 
easily implemented by means of a binary mask. 

The square root calculation is performed by means 
of standard algorithms, i.e., using the power series 
(Chernoyarov and Goloborodko, 2008) or the Heron 
formula (Korn and Korn, 2000), for example. 

As it can be seen, the unit quantity of calculating the 
RMS value for the signal sample is minimal and does 
not depend on the total sample size. A hardware 
implementation of the considered algorithm is also 
possible. 

 
a) 
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b) 

Figure 2. The block diagram of the algorithm for determining the 
RMS signal value 

3.2. The Harmonic Root-Mean-Square Value 

The analysis of the measurement accuracy of the 

harmonic (4) RMS value using the estimate (7) is 
carried out by means of simulation. In Figure 3a, the 
dependence is plotted of the normalized RMS value 

 upon the current normalized time  

(where  is the sampling interval). It is assumed 

that the signal frequency is  kHz (the 

signal period is  μs), the sampling 

frequency is  MHz (  μs), the sample size is 

, the number of samples within the period is 

, and the number of periods within the 

averaging interval is . At the initial stage, the 
shifters are filled during 4.096 ms, and then the 
current measurements are conducted, and they are, as 
one can see, fairly accurate. The right normalized 

result is equal to , and it is drawn by dashed line. 

In Figure 3b, the error is shown of the measurement 
results (hundredths of a percent). Their fluctuations 
are caused by sample shifting during the realization of 
the harmonic signal. 

 
a) 

 
b) 

Figure 3. The results of measuring the normalized harmonic RMS 
value 

3.3. The Root-Mean-Square Value of the Sawtooth 
Signal 

Now let us suppose that the sawtooth signal with the 

period  is being processed. The reference realization 
of such a signal is drawn in Figure 4. 

In Figures 5a and 5b, there are presented the results 

of measuring the RMS signal value  (where i is 
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the number of the current sample) in both general and 
steady states, respectively, while, according to (1), the 

exact RMS value is equal to . It is assumed 

that  (100 samples are formed within the 
signal period). As it can be seen, in that example the 
high measurement accuracy is also provided. 

 
Figure 4. The example of the sawtooth signal 

 
a) 

 
b) 

Figure 5. The results of measuring the normalized RMS value of the 
sawtooth signal 

Thus, the introduced algorithm can be effectively 
used to determine the RMS value of a signal of an 
arbitrary shape, and it does not require time 
synchronization. 

4. Measuring the Root-Mean-Square Value of 
a Noise 

The algorithm presented in Figure 2 allows us to 
measure the RMS value of a random signal (noise). In 
Figure 6, there is shown the realization of the samples 

 of the band Gaussian random process with zero 
mathematical expectation and dispersion (mean 

power) . 

In Figure 7a, there is drawn the dependence of the 

measured normalized value  upon the number i 

of the processed sample, and in Figure 7b one can see 

the same dependence but for .  

 
Figure 6. The realization of the centered band Gaussian random 
process 

 
a) 

 
b) 

Figure 7. The results of measuring the normalized RMS value of the 
band Gaussian random process 

Under , the RMS relative measurement 

error is equal to 1.4%. And if , then it increases 

up to 2.4%, while if , then it decreases down 
to 0.44%. 

In Figures 8, 9, there are presented the similar 
simulation results for the band random process 
characterized by the lognormal distribution (Crow and 

Shimizu, 1988) with the parameters  and . 
In Figure 8, one can see the type realization of such a 
process and in Figure 9 – the dependences of the 

measured normalized value  upon the number i 

of the processed sample under . Here the 
dotted line corresponds to the exact value 

 while the RMS relative measurement 
error is equal to 0.85 %. 
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Figure 8. The realization of the band lognormal random process 

 
a) 

 
b) 

Figure 9. The results of measuring the normalized RMS value of the 
band lognormal random process 

It can be noted that in order to determine the mean 
square of a random process (that matches the 
dispersion or mean power if the process is centered), 
in the algorithm presented in Figure 2, it is not 
necessary to extract the square root, and that 
simplifies the calculation. 

5. Conclusions 

Application of the considered algorithm for 
determining the RMS signal value makes it possible to 
implement high-speed simulation models of 
voltmeters and ammeters (multimeters), and their 
readings will not depend upon the waveform. These 
algorithms do not require both the knowledge of the 
signal period and the time synchronization. It is 
shown that a sufficiently high accuracy of the direct 
RMS value measurement can be achieved while 
processing both deterministic and random signals of 
arbitrary shape. The measurement error decreases 
rapidly with the processed signal sampling size 
increasing, while the computational cost increases 
proportionally to the logarithm of this value. 
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