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Abstract 
This work shows the use of parallel objects to build High Level Parallel Compositions or HLPC and their usefulness in genomics 
through four case studies related to sequencing DNA chains. The first two case studies are combinatorial optimization problems: 
grouping fragments of DNA sequences and the parallel exhaustive search (PES) of RNA strings that help the sequence and 
assembly of DNAs in the construction of gnomes. The third case study shows the implementation of a Convolutional Neuronal 
Network as a Parallel Object Composition to solve the problem of the recognition of DNA sequences from a database with 4 types 
of hepatitis C virus (type 1, 2, 3 and 6). The results of this classification were obtained in terms of percentages of training precision 
and validation precision. The fourth and final case study shows the problem of sequence typing (STP) as a form of DNA sequence 
classification. It is particularized in a proposal for a parallel solution to find conserved regions of sequences that help discriminate 
between different types of hepatitis C virus, through the creation of a decision tree using HLPC. We show the algorithms that 
solves these problems using modeling and parallel simulation, their design and implementation as HLPC and the performance 
metrics in their parallel execution using multicores, video accelerator card and CPU-SET or processors with shared-distributed 
memory. 
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1. Introduction 

A computer simulation is a computation that models 
the behavior of some real or imagined systems over 
time. Computer simulations have become an important 
and useful part of the mathematical models of many 
natural science systems such as physics, electronics, 
astrophysics, chemistry and biology, Fujimoto (2000). 
Parallel Simulation refer to technologies that enable a 
simulation program to execute on a computing system 

containing multiple processors, Wilkinson, and Allen 
(2000). Parallel simulation then refers to the use of 
technologies that allow a simulation program to run in 
a computer system that contains several processors 
physically speaking, or several heavy or light processes 
at the programming language level. In this work we use 
both approaches to propose the use of parallel objects 
to build High Level Parallel Compositions or HLPC and 
their usefulness in genomics through four case studies 
related to sequencing DNA chains. A DNA sequence 
consists of an alphabet that is formed with the letters 
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of the four nitrogenous bases that compose it: adenine, 
thymine, guanine and cytosine. In the area of genomics 
this is important because different types of sequence 
tests can be used that identify, for example, infectious 
agents present in a blood sample taken from a patient, 
for diagnostic tasks. The rapid speed of sequencing 
attained with modern DNA sequencing technology has 
been instrumental in the sequencing of complete DNA 
sequences, or genomes of numerous types and species 
of life, Pareek, Smoczynski and Tretyn (2011). There are 
many proposals to obtain partial and complete DNA 
sequences quickly, obtaining speed in the calculations 
using current technology. A direct way to reduce the 
time of sequencing of DNA chains for different 
purposes within genomics is to parallelize the 
algorithms and solution techniques to the problems 
that arise. The reader can consult the references Peña 
et-al (2014), Sanjuan, Arnau and Claver (2008) and 
Yang et-al (2008) that relate to this work. The present 
research uses the structured parallel programming to 
propose an implementation of a library classes named 
high level parallel compositions or HLPC, Corradi et al 
(1995), Danelutto and Torquati (2014). HLPCs are based 
on the object-orientation paradigm to solve problems 
that are prone to parallelization by using a class of 
concurrent active objects that provide the programmer 
with the most common communication patterns in 
parallel programming: farms, pipeline and Three n-
arity, Capel and Troya (1994). With them, simulations 
related to obtaining DNA sequences within Genomics 
have been solved. Four case studies are shown to 
demonstrate the usefulness of the HLPC, case study-1: 
Parallel exhaustive search of RNA strings using HLPC, 
case study-2: Assembly of DNA sequences using HLPC, 
case study-3: Recognition of DNA sequences using 
convolutional neuronal network with HLPC and case 
study-4: DNA sequence typing with decision trees 
using HLPC. Finally, for each case study, the 
performance obtained in the speed of its parallel 
executions and the scalability of the speedup compared 
to Amdahl's Law are shown, with respect to the number 
of CPU-SET used in the executions of each HLPC. 

2. State of the art and motivation 

The transformation of existing sequential applications 
into parallel ones for multiprocessors environments 
has been of great interest for decades. One alternative 
is to opt for parallel and concurrent programming 
algorithms at a high level of abstraction by using 
patterns of communication/interaction between 
processes. In Collins (2011), the effectiveness and 
applicability of automatic techniques has been 
explored. FastFlow is a framework intended to 
propitiate high-level, pattern-based parallel 
programming proposed by Aldinucci et-al (2014). The 
ParaPhrase project of Torquati (2015) develop 
frameworks and offer to users constructs, templates 
and parallel communication patterns between 
processes. Myoupo and Tchendji (2014) offers an 
efficient coarse parallel algorithm to solve the optimal 

binary search tree problem by using a binary tree as 
communication pattern between the processes 
involved. Some environments of parallel 
programming, as the one called SklECL, Steuwer et-al. 
(2011), are based on skeletons an wrappers that make 
up the fundamental constructs of a coordination 
language, defining modules that encapsulate code 
written in a sequential language and three classes of 
skeletons: control, stream parallel, and parallel data. 
After reviewing the literature on the research topic, we 
are interested to do research work that has to do with 
parallel applications that use predetermined 
communication patterns, among other component-
software. At least, the following ones have currently 
been identified as important open problems: The lack 
of acceptance structured parallel programming 
environments of use to develop applications, the 
necessity to have patterns or HLPCs (High Level 
Parallel Composition), determination of a complete set 
of patterns as well as of their semantics and adoption of 
an object-oriented approach provide uniformity, 
genericity and reusability. The pattern of HLPC has 
deserved special interest from us. 

3. HIGH-LEVEL Parallel Compositions 

The basic idea here is to use classes to implement any 
type of parallel communication patterns between the 
processes of an application or distributed/parallel 
algorithm, thus following the object orientation. 
Starting from these classes, there will be objects (class 
instances) and the execution of any object method can 
be carried out through a service request. A HLPC comes 
from the composition of three object types:  

• An object manager that controls a set of objects 
references, that address the collector object and 
several stage objects and represent the HLPC 
components whose parallel execution is 
coordinated by the object manager. 

• The objects stage are objects of a specific purpose, 
in charge of encapsulating a client-server type 
interface that settles down between the manager 
and the slave-objects. These objects are external 
entities that contain the sequential algorithm that 
constitutes the solution of a given problem. 
Additionally, they provide the necessary inter-
connection to implement the semantics of the 
communication pattern whose definition is sought.  

• A collector object is an object in charge of storing 
the results received from the stage objects to which 
is connected in parallel with other objects of HLPC 
composition. During a service request the control 
flow within the stages of a HLPC depends on the 
implemented communication pattern. When the 
composition finishes its execution an instance of 
the collector class that is in charge of storing these 
results and sending them to the manager, which 
send the results to the environment. 
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Manager, collector and stages are included in the 
definition of a PO, Corradi et-al (1995).  

3.1. The HLPC Pipeline 

By using the pipeline parallel processes design 
technique, the problem becomes divided in a series of 
tasks that must be completed with a sequential 
dependency between each and the next one, i.e., one 
after another. In a pipeline each task can be executed by 
a process, thread or processor independently, Roosta 
(1999). The pipeline processes are sometimes called 
stages of the pipeline, Rossainz and Capel (2008). Each 
stage can contribute to the solution of the total problem 
and it can pass on the information that the following 
stage of the pipeline needs. Many times, this type of 
parallelism is seen as a form of functional 
decomposition. Figure 1 represents the pipeline parallel 
pattern of communication as a HLPC. 

 
Figure 1: The HLPC of a Pipeline 

3.2. The HLPC Farm 

The so named farm parallel pattern of interaction is 
made up of a set of independent processes, called 
worker processes, and a process that controls them, 
called the process controller by Roosta (1999), 
Rossainz and Capel (2008). The worker processes are 
executed in parallel until all of them reach a common 
objective. The process controller oversees distributing 
the work and of controlling the progress of the farm 
until the solution of the problem is found. Figure 2 
shows the pattern of the farm as HLPC. 

 
Figure 2: The HLPC of a Farm 

3.3. The HLPC Tree 

For simplicity the HLPC of a binary tree is shown, 
although it can be generalized to an arity-n tree. The 
nodes of the tree are represented by processors, 
processes or threads. The root node of the tree receives 
as input a complete problem that is divided into two 
parts. One part is sent to the left-son node, while the 
other is sent to the node that represents the right-son. 
This division process progresses recursively until the 
lowest atomic level of nodes in the tree is reached. After 
a certain time, all the leaf-nodes receive as input a 
subproblem given by its father-node, then they solve it 
and the solutions are again sent to their ancestors. Any 
father in the tree will obtain the partial solutions from 
its children and will combine them to provide only one 
solution that will be send to its own father node when it 
finishes. Finally, the root node will deliver the complete 
solution of the problem on finishing, Hansen (1993). 
Figure 3 shows the graphic representation of an arity-
2 tree as an HLPC. 

4. Case Study 1: Parallel exhaustive search of 
RNA strings 

In this work, it is proposed by using the HLPC model to 
carry out a Parallel Exhaustive Search (PES) of RNA or 
DNA strings using the communication pattern called 
FARM. The PES was carried out in plain text files 
containing a representation of RNA strings of an 
organism with its respective name. In the HLPC Farm 
used, the process controller or manager performs the 
pre-processing of the file extracting the strings written 
in the FASTA format (see Pearson and Lipman (1988) 
for more details) to create the dictionary formed of the 
characteristics of the strings and the strings 
themselves, which is sent to each worker process or 
stage to perform the exhaustive search using the 
associated algorithms in the manager object and in the 
slave objects of the HLPC. This search is carried out in 
parallel by all the farm worker processes. 



4 | 32nd European Modeling & Simulation Symposium, EMSS 2020 
 

 

 
Figure 3: The HLPC of a Tree-Divide & Conquer 

The HLPC Farm always guarantees a workload balance 
of these processes thanks to the synchronization 
restriction of the maximum parallelism that its 
components have guaranteeing the reduction in the 
execution times of each worker process, but also of the 
HLPC Farm itself. Then a new model of HLPC called 
HLPC ARNi is created, which is shown in Figure 4.  

 
Figure 4: Model of HLPC ARNi 

The pre-processing of the data is done through a text 
file as input to the HLPC ARNi. This file contains the 
name of a text string, as well as its characteristics, 
which is sent to the Manager of the HLPC or Farm 
Controller Process. The Manager has the Pre-
Processing through a Slave Object, which consists of 
joining in a single string, all the ARNi strings that are in 
the TXT input file including the line text that contains 
the characteristics of the organism in question, then 
the Manager distributes to each Stage process the 

corresponding workload defining the limits start and 
end of the PES for each Stage. The load balance is made 
using the maximum parallelism in each Stage process 
(worker) of the Farm which is based on the identifier 
number of each worker process, Lee, et-al (2007), 
Levitin (2003). Subsequently the PES is performed in 
each stage of the HLPC ARNi executing the associated 
algorithm through the corresponding Slave Object and 
if a predefined substring is found within the ARNi 
string it is sent to the Collector object, which receives 
them in parallel from all the stage processes (workers) 
connected to it. The Collector bugs fixer eliminates 
repetitions of strings and the result is sent to the 
Manager who in turn sends it to an output file to the 
user. A simulation was designed using the HLPC ARNi 
with the RNAi string database located at the Pombase 
site 
(ftp://ftp.ebi.ac.uk/pub/databases/pombase/pombe/C
hromosome_Dumps/fasta/). Easts are the agents of 
fermentation and are found on the surface of plants, 
Wood, et-al (2003). The experiment was carried out on 
a server machine with Intel Xeon processor 2630 2.40 
GHz and 8 cores. Experiments were performed with 
different number of nodes to determine if the workload 
was performed correctly. To determine if the length of 
the strings to be searched has a direct impact on the 
execution time, experiments with different string 
lengths were performed for their search, where the 
execution times increase according to the length of the 
search string grows, but on the other hand the 
execution times decrease as the number of nodes 
(nuclei) that are used in the execution of the search 
increases. In Figure 5 shows the scalability of the 
Speedup found in the HLPC RNAi for different string 
lengths using 3 to 8 nodes in its execution, showing 
generally a good acceleration as the number of nodes 
increases. 

 
Figure 5: Scalability of the magnitude of the Speedup found for the 
HLPC RNAi in exclusive nodes of 2, 3, 4, 5, 6, 7 and 8 cores 

5. Case Study 2: Assembly of DNA sequences 

The use of HLPCs for grouping DNA sequence 
fragments from the parallelization of a clustering 
algorithm to evaluate a set of fragments are made, 
which have a high probability of being aligned in an 
assembly task, Masoudi-Nejad et-al (2013), DanishAli 
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and Farooqui (2013). The algorithm finds the splices 
between the fragments using the Myers algorithm and 
links them in a graph. Then an in-depth search is done 
in the graph to form the groups and send them as a 
result. The assembly of DNA strings is proposed as a 
combinatorial optimization problem and is classified 
as NP-hard and is based on the paradigm divide-and-
conquer using a structure type farm, so that the 
computational cost of finding the sequence alignments 
and its splice is substantially reduced with respect to its 
sequential version. The number of processes required 
to process the fragments of DNA sequences of a specific 
genome such as that of a virus or bacteria is determined 
by the splice of the strings found by the sequential 
solution algorithm, which looks in parallel for overlaps 
in the remaining fragments. Two sub-strings of each 
fragment are taken for comparison with other 
fragments; and thus, splices are located and associated 
with the processes. A splice graph is then generated 
that shows the relationship between pairs of nodes, as 
well as the lack of communication among others. The 
set of nodes of the graph that are inter-related are 
grouped together within a worker process pattern farm. 
Each set of related nodes in the graph are independent 
and represent the grouping of fragments found. In 
Figure 6 is shown the representation of HLPC for 
grouping DNA sequence fragments. 

 
Figure 6: The HLPC GraphADN 

 
Figure 7: HLPC GraphADN Speedup found with virus and bacterial 
genomes from the European Nucleotide Archive 

The new HLPC named HLPC GraphADN is structured as 
a FARM of n-fragments of DNA sequences and each 
worker process is itself a two directions-
communication pipeline HLPC formed by m-stages 
where each stage of HLPC Pipe represents a splice 
sequence of DNA strings connected with both, the 
previous stage as the next stage. The collector object 
receives the number of formed groups and the elements 
that belong to each of the formed groups. With the 
latter information collected, an in-depth search is 
performed to locate these items and obtain the 
sequence groups formed by the sequential algorithm 
assigned to each of the HLPC’s slave objects with this 
result, the user can use an assembly of DNA sequences 
to try to complete a particular genome or to finish an 
incomplete sequence of DNA strings of some animal or 
plant type species. An simulation was designed by using 
the HLPC GraphADN with genomes of viruses and 
bacteria available on the web whose data were obtained 
from European Nucleotide Archive, is shown in Figure 
7. The plot shows the number of processes deployed for 
the calculation of eight genomes in an experiment 
conducted on a computer Intel Core i8 processor and 
using a video accelerator card with 1,664 CUDA cores. 

6. Case Study 3: Recognition of DNA sequences 
using convolutional neuronal network 
(CNN) 

A CNN is an algorithm for machine learning in which a 
model learns to perform classification tasks directly 
from images, videos or sounds, Calvo (2015). The 
parallelization of a convoluted neuronal network under 
the HLPC model is shown. The HLPC Pipeline is adapted 
to a convoluted neuronal network model to the transfer 
learning technique; which allows its execution in 
parallel computers or computers with GPUs. 
Convolutional networks have characteristics of neural 
networks such as activation functions or fully 
connected layers, but also introduce two concepts: the 
convolutional layer and the grouping or sampling layer. 
The architectures of convolutional networks are built 
by stacking these elements, that is why according to the 
computational and memory use issues of a neural 
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network for image processing, Marturet and Alferez 
(2018), it is useful and appropriate to represent it 
through an HLPC pipeline. For the training of a 
convolutional neuronal network, the transfer of 
learning by extraction of deep descriptors was used as 
a way of training and validating the neural network on 
the set of images of the specific problem to be solved, 
Marcelo, et-al (2000). In this way we obtain the HLPC 
Pipeline-CNN that is shown in the figure 8, and that 
will help to solve the case study that is shown below. 

 
Figure 8: HLPC Pipeline-CNN 

The idea is to convert the DNA sequences to graphic 
representations to train the HLPC Pipeline-CNN. The 
DNA sequences are represented by letters: A-Adenine, 
G-Guanine, C-Cytosine and T-Thymine, however, a 
CNN is not made to process information with this 
format, so a graphic representation of the sequences 
was designed. We used 1847 DNA sequences from a 
database with 4 types of hepatitis C virus (type 1, 2, 3 
and 6) taken from the repository available on the ViPR 
page 
(https://www.viprbrc.org/brc/home.spg?decorator=vi
pr) and a set of DNA sequences from the Molecular 
database that has 3190 sequences, available on the UCI 
page (https://archive.ics.uci.edu/ml/index.php). 

The computer equipment used for the training of the 
HLPC Pipeline-CNN was a parallel computer with 64 
processors of which only 32 were exclusive for the tests 
of this work, 8 GB of main memory with a distributed 
shared memory architecture and high-speed buses. 
Regarding classification results for the HLPC Pipeline-
CNN trained with the database of the four types of 
Hepatitis C virus, a precision of 95% was obtained with 
145 images tested and at the end of step 4000 the 
precision training was 94.5% and precision validation 
95%. The graphs in Figure 9 show the performance 

analysis of the HLCP Pipeline-CNN from 1000 training 
steps to 4000 training steps respectively. 

 
Figure 9: Speedup scalability found for HLPC 

 Pipeline-CNN of Precision training and precision 
validation with 1000-4000 training steps for Hepatitis 
C virus type 1,2,3 and 6. In this graph the speedup of the 
precision training and precision validation of HLPC 
Pipeline-CNN with classes of Hepatitis C virus type 1, 2, 
3 and 6 is illustrated. In her, the speedup shows an 
acceleration to be incorporating more CPU-SET, 
always below the law of Amdahl. The execution times in 
each training vary. 

7. Case Study 4: DNA sequence typing with 
decision trees 

The problem of sequence typing (STP) is shown as a 
form of DNA sequence classification. It is particularized 
in a proposal for a parallel solution of finding conserved 
regions of sequences that help discriminate between 
the different types of hepatitis C virus through the 
creation of a tree of decision using High Level Parallel 
Compositions (HLPC) and that the researchers carry 
out the design of primers and diagnostic tests of 
polymerase chain reactions (PCR) when they try to 
detect different types of viruses, in less time. A decision 
tree is a structure formed by a set of nodes, leaves and 
branches that represents a prediction model whose 
objective is inductive learning from observations and 
logical constructions, Barrientos, Cruz and Acosta 
(2009). The root node of the tree is the attribute from 
which the classification process begins, the internal 
nodes correspond to each of the questions about the 
attribute of the problem. Each possible response is 
represented by a child node. The branches that leave 
each of these nodes are labeled with the possible 
attribute values. The leaf nodes correspond to a 
decision, which coincides with one of the class 
variables of the problem to be solved (Barrientos, Cruz 
and Acosta, 2009). The definition of the CPAN-
DesicionTree (see Figure 10)  is shown as an integrated 

https://www.viprbrc.org/brc/home.spg?decorator=vipr
https://www.viprbrc.org/brc/home.spg?decorator=vipr
https://archive.ics.uci.edu/ml/index.php
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part of a solution proposal (entropy, information gain 
and decision tree) in the problem to be solved: In a set 
of sequences or instances Gw of DNA we want to locate 
those attributes 𝐴𝑖 that provide more information and 
are considered the best attributes to solve the 
classification problem of the seven Cy classes of the 
hepatitis C virus that currently exist. As an example of 
simulation, the data in Table 1 is used to show that it is 
possible to classify DNA sequences using the concepts 
of entropy and information gain. In this case, attribute 
𝐴3 with greater mayor (Information Gain) is selected, 
this attribute quickly discriminates classes 𝐶1 and 𝐶4. 
When calculating again 𝐼𝐺 of all the attributes, it is 
obtained that both 𝐴1 and 𝐴2 allow to discriminate 
classes 𝐶2 and 𝐶3. This is obtained by generating a 
decision tree where each vertex has a maximum of 4 
possible values. This structure is created using the 
CPAN-DesicionTree (Figure 10). 

Table 1. Representation of 𝑆 set of instances 𝐺𝑤, where each instance 

belongs to a class 𝐶𝑦. 

Cy Gw A1 A2 A3 A4 A5 

C1 G1 A T T A T 
C1 G2 A T T C T 
C2 G3 A G C A C 
C2 G4 A G C G C 
C2 G5 A G C A T 
C2 G6 A G C G T 
C3 G7 G T C T C 
C3 G8 G T C T C 
C3 G9 G T C A G 
C3 G10 G T C T G 
C4 G11 A G A A C 
C4 G12 A G A G C 

The CPAN-DesicionTree receives through its Manager 
process the database or repository with the DNA 
sequence instances of the Hepatitis-C virus. The 
Manager process sends the information to the first 
Stage process that represents the decision tree root and 
that has a slave object associated with the 
mathematical algorithms and models of Shannon's 
entropy and information gain. Then there is an 
attribute considered as “best attribute” that is solving 
the classification problem or a branch that generates 
more nodes and can obtain the best attributes that are 
sent to the Collector process who receives them to form 
the best solution set attributes of the classification 
problem. The set of best attributes is sent to the 
Manager process, which in turn sends them to the user 
as the result of the process. The execution of the 
DesicionTree CPAN processes is carried out in parallel, 
with the restriction, synchronization and process 
communication policies, whose details can be found in 
Collins (2011), Ernsting and Kuchen (2012). Figure 11 
shows the scalability of the Speedup found in the 
CPAN-DesicionTree from 3 to 8 cores, obtaining a good 
acceleration. 

 

 
Figure 10: Decision tree represented as the CPAN-DesicionTree to solve 
the problem of classification in DNA sequences 

 

 
Figure 11: Speedup scalability found for CPAN-DesicionTree in the 
problem of classification of Hepatitis-C virus DNA sequences from the 
example in Table 1. 

8. Conclusions 

We discuss the design, implementation and simulation 
of parallel applications based on the HLPC. In a way we 
discuss the implementation of HLPCs pipeline, farm 
and Tree as patterns of communication/interaction 
between processes, which can even be used by 
inexperienced parallel application programmers to 
obtain efficient code by only programming the 
sequential parts of their applications. We have 



8 | 32nd European Modeling & Simulation Symposium, EMSS 2020 
 

 

presented four case studies: the parallel exhaustive 
search of RNAi strings through the new HLPC RNAi 
constructed, the parallel calculation of the DNA 
sequences for 8 genomes, the implementation of a 
Convolutional Neuronal Network as a Parallel Object 
Composition to solve the problem of the recognition of 
DNA sequences from a database with 4 types of 
hepatitis C virus and the solution to the problem of 
sequence typing (STP) as a form of DNA sequence 
classification to find conserved regions of sequences 
that help discriminate between different types of 
hepatitis C virus, through the creation of a decision tree 
using HLPC. In all cases of study, the efficiency and 
speedup scalability of the HLPCs in the solution of the 
problems has been shown. 
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