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ABSTRACT 
In many investment banks and major fund-management 
companies, automated "robot" trading systems now do 
work that 20 years ago would have required large 
numbers of human traders to perform: the rise of robot 
traders is a major success-story for artificial intelligence 
(AI) research. Although the technical details of currently 
profitable automated trading systems are closely guarded 
commercial secrets, the rise of robot trading can be traced 
back to a sequence of key AI research papers. Each of 
these key papers relied on minimal abstract simulation 
models of real financial markets: the simulators provide 
test-beds for trials in which the performance of different 
trading strategies could be evaluated and compared. 
Recent studies have revisited these seminal results, using 
more realistic simulations of contemporary financial 
markets, and have cast major doubts on core conclusions 
drawn in the original publications. Therefore, it seems 
reasonable to argue that present-day simulation methods 
are exposing significant problems in past research on 
automated trading. This position paper presents no new 
empirical results but instead presents a review of key past 
papers and an argument, a manifesto, for establishing a 
shared market-simulator test-bed that adequately reflects 
current real-world financial markets, for use in future 
evaluation and comparison of trading strategies. 

Keywords: financial markets, automated trading, 
simulation methodology. 

1. INTRODUCTION
In the past fifteen years most major financial markets 
around the world have undergone seismic shifts in the 
extent to which highly-paid (and, presumably, highly 
intelligent) human traders have been replaced by 
automated trading systems known variously as 
algorithmic trading systems or more simply as robot 
traders. In many investment banks and major fund-
management companies, automated trading systems now 
do work that previously would have required tens or 
hundreds of human traders to perform: in this sense, the 
rise of robot traders is a major success-story for artificial 
intelligence (AI) research.  

Although the technical details of profitable automated 
trading systems are closely guarded commercial secrets, 
the rise of robot trading can be traced back to a sequence 
of key publications by academic and industrial AI 
researchers, commencing in 1993 and continuing 
through to 2008. Each of these key papers relied (to 
varying extents) on simulation models of real financial 
markets: the market simulators provide test-beds for 
trials in which the performance of different trading 

strategies could be evaluated, and emphasis was given to 
establishing which strategy out-performed (or 
"dominated") other strategies previously described in the 
published literature. All of these key studies involved 
minimal, abstract simulation models of real financial 
markets. Results from this sequence of papers are widely 
cited and have until very recently been essentially 
unquestioned. However, recent studies have revisited 
these results, extending the nature of the trials that the 
various strategies are subjected to, and exploring their 
responses in more realistic simulations of contemporary 
financial markets: this has cast major doubts on core 
conclusions drawn in the original publications.  

The recent studies involve highly compute-intensive 
brute-force exhaustive simulation approaches, methods 
that arguably would have been prohibitively expensive to 
attempt when the original research was undertaken in the 
1990's. Thus, it seems that modern-day simulation 
methods are exposing significant problems in past 
research. This position paper presents no new empirical 
results but instead presents an argument, a manifesto, for 
establishing a modernized methodology for evaluating 
trading agents. Specifically, it is proposed here: (1) that 
the simple abstract models of markets that were used 
previously should be replaced by a simulation and 
modelling approach that more accurately reflects the 
micro and macro structure of present-day financial 
markets and the traders that interact within them, markets 
in which co-adaptive dynamics are a major factor; (2) 
that researchers pay more attention to the combinatorics 
of rigorous evaluation – if tens or hundreds of millions 
of simulation trials are required to rigorously establish a 
result, we should not shy away from that; and (3) that 
open-source software methods should be fully exploited 
to ensure that the international community of researchers 
working on automated trading share common simulation 
tools, thereby easing replication and extension of earlier 
results. In the final section of this paper, I describe a 
major update to an existing open-source financial-market 
simulator which is now offered as a freely available 
resource for the research community. The updated 
simulator captures many aspects of current financial 
markets that have been absent in previous simulation-
based studies, and is offered as a free resource to the 
community in the hope that it becomes a trusted common 
test-bed for future simulation-based evaluation of 
automated trading strategies.  

In Section 2 we explain the background to this work: 
there is quite a lot to cover. Section 2.1 briefly reviews 
the rise of automated trading in the global financial 
markets. Section 2.2 then introduces the concepts and 
terminology from the economics of market 
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microstructure that are relevant to the discussion here. 
After that, Section 2.3 reviews a sequence of key papers 
in the field and then Section 2.4 discusses recent papers 
which, using contemporary simulation approaches, 
overturn conclusions drawn in the earlier papers. 
Sections 3 and 4 then respectively discuss 
microstructural and macrostructural issues in simulating 
financial markets for evaluating automated trading 
systems. This leads into Section 5's closing description 
of a modernized simulator (i.e. one that better reflects the 
structure of current financial markets) created by 
extending an established public-domain open-source 
exchange simulator, and its intended use-cases.  

2. TRADERS, MARKETS, AND KEY PAPERS
The 2002 Nobel Prize in Economics was awarded to 
Vernon Smith, in recognition of Smith’s work in 
establishing and thereafter growing the field of 
Experimental Economics (abbreviated hereafter to 
“EE”). Smith showed that the microeconomic behaviour 
of human traders interacting within the rules of some 
specified market, known technically as an auction 
mechanism, could be studied empirically, under 
controlled and repeatable laboratory conditions, rather 
than in the noisy messy confusing circumstances of real-
world markets. The minimal laboratory studies could act 
as useful proxies for studying real-world markets of any 
type, but one particular auction mechanism has received 
the majority of attention: the Continuous Double Auction 
(CDA), in which any buyer can announce a bid-price at 
any time and any seller can announce an offer-price at 
any time, and in which at any time any trader in the 
market can accept an offer or bid from a counterparty, 
and thereby engage in a transaction. The CDA is the basis 
of major financial markets worldwide.  

Each trader in one of Smith's experimental CDA 
markets would be assigned a private valuation, a secret 
limit price: for a buyer this was the price above which he 
or she should not pay when purchasing an item; for a 
seller this was the price below which he or she should not 
sell an item. These limit-price assignments model the 
client orders executed by sales traders in real financial 
markets; we’ll refer to them just as assignments in the 
rest of this paper. Traders in EE experiments from 
Smith's onwards are often motivated by payment of some 
form of real-world reward that is proportional to the 
amount of profit that they accrue from their transactions: 
the profit is the difference between the limit price 
specified when a unit is assigned to a trader, and the 
actual transaction price for that unit.  

The limit prices in the assignments defined the 
market's supply and demand schedules, which are 
commonly illustrated in economics texts as supply and 
demand curves on a 2D graph with quantity on the 
horizontal axis and price on the vertical axis: where the 
two curves intersect is the market's theoretical 
competitive equilibrium point – a pair of (price, quantity) 
coordinates. A fundamental observation from 
microeconomics (the study of markets and prices) is that 
competition among buyers pushes prices up, and 

competition among sellers pushers prices down, and 
these two opposing influences on prices balance out at 
the competitive equilibrium point; a market  in which 
transaction prices rapidly and stably settles to the 
theoretical equilibrium price is often viewed by 
economists as efficient (for a specific definition of 
efficiency) whereas a market in which transactions 
consistently occur at off-equilibrium prices is usually 
thought of as inefficient: for instance, if transaction 
prices are consistently above the theoretical equilibrium 
price then it's likely that buyers are being ripped off.  By 
varying the prices in the assignments to the traders, the 
nature of the market's supply and demand curves could 
be altered, and the effects of those variations on the speed 
and stability of the market's convergence toward an 
equilibrium could be measured.  

Smith’s initial set of experiments were run in the late 
1950’s, and the results and associated discussion were 
presented in his first paper on EE, published in the highly 
prestigious Journal of Political Economy (JPE) in 1962. 
It seems plausible to speculate that when his JPE paper 
was published, Smith seemingly had no idea that it would 
mark the start of a line of research that would eventually 
result in him being appointed as a Nobel laureate. And it 
seems even less likely that he would have foreseen the 
extent to which the experimental methods laid out in that 
1962 paper would subsequently come to dominate the 
methodology of researchers working to build adaptive 
autonomous trading agents by combining tools and 
techniques from AI, ML, agent-based modelling (ABM), 
and agent-based computational economics (ACE). 
Although not a goal stated at the outset, this strand of 
AI/ML/ABM/ACE research converged toward a 
common aim: specifying an artificial agent, an 
autonomous adaptive trading strategy, that could 
automatically tune its behavior to different market 
environments, and that could reliably beat all other 
known automated trading strategies, thereby taking the 
crown of being the current best trading strategy known in 
the public domain, i.e., the “dominant strategy”. Over the 
past 20 years the dominant strategy crown has passed 
from one algorithm to another. Vytelingum’s (2006) AA 
strategy, was widely believed to be the dominant 
strategy, but recent results using contemporary large-
scale computational simulation techniques indicate that 
it does not perform so well as was previously believed 
from its initial success in small numbers of trials.  

Given that humans who are reliably good at trading 
are generally thought of as being “intelligent” in some 
reasonable sense of the word, the aim to develop ever 
more sophisticated artificial trading systems is clearly 
within the scope of AI research, although some very 
important early ideas came from the economics 
literature: a comprehensive review of relevant early 
research was given in Cliff (1997). Below in Section 2.1 
we first briefly introduce eight key publications leading 
to the development of AA; then describe key aspects of 
EE market models in Section 2.2; and then discuss each 
of the eight key publications in more detail in Section 2.3. 
After that, Section 2.4 summarizes the results of Vach 
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(2015) and Cliff (2019), which cast doubts on the hitherto 
apparently resolved issue of which trading agent is best.  

2.1. A Brief History of Trading Agents 
If our story starts with Smith’s 1962 JPE paper, then the 
next major step came 30 years later, with a surprising 
result published in the JPE by Gode and Sunder (1993): 
this popularized a minimally simple automated trading 
algorithm now commonly referred to as ZIC. A few years 
later two closely related research papers were published 
independently and at roughly the same time, each written 
without knowledge of the other: the first was a Hewlett-
Packard Labs technical report by Cliff (1997) describing 
the adaptive AI/ML trading-agent strategy known as the 
ZIP algorithm; the second summarized the PhD thesis 
work of Gjerstad, in a paper co-authored with his PhD 
advisor (Gjerstad & Dickhaut 1998), describing an 
adaptive trading algorithm now widely known simply as 
GD. After graduating his PhD, Gjerstad worked at IBM’s 
TJ Watson Labs where he helped set up an EE laboratory 
that his IBM colleagues used in a study that generated 
world-wide media coverage when the results were 
published by Das et al. at the prestigious International 
Joint Conference on AI (IJCAI) in 2001. This paper 
presented results from studies exploring the behavior of 
human traders interacting with GD and ZIP robot traders, 
in a CDA with a Limit Order Book (LOB: explained in 
more detail in Section 2.2, below), and demonstrated that 
both GD and ZIP reliably outperformed human traders. 
Neither GD nor ZIP had been designed to work with the 
LOB, so the IBM team modified both strategies for their 
study. A follow-on 2001 paper by Tesauro & Das (two 
co-authors of the IBM IJCAI paper) described a more 
extensively Modified GD (MGD) strategy, and later 
Tesauro & Bredin (2002) described the GD eXtended 
(GDX) strategy. Both MGD and GDX were each claimed 
to be the strongest-known public-domain trading 
strategies at the times of their publication.  

Subsequently, Vytelingum’s 2006 thesis introduced 
the Adaptive Aggressive (AA) strategy which, in a major 
journal paper (Vytelingum et al., 2007), and in later 
conference papers (De Luca & Cliff 2012a, 2012b), was 
shown to be dominant over ZIP, GDX, and human 
traders. Thus far then, AA held the title.  

However Vach (2015) presented results from 
experiments with the OpEx market simulator (De Luca, 
2015), in which AA, GDX, and ZIP were set to compete 
against one another, and in which the dominance of AA 
was questioned: Vach’s results indicate that whether AA 
dominates or not can be dependent on the ratio of 
AA:GDX:ZIP in the experiment: for some ratios, Vach 
found AA to dominate; for other ratios, it was GDX. 
Vach studied only a relatively small sample from the 
space of possible ratios, but his results prompted Cliff 
(2019) to exhaustively run through a wide range of 
differing ratios of four trading strategies (AA, ZIC, ZIP, 
and the minimally simple SHVR strategy described in 
Section 2.2), doing a brute-force search for situations in 
which AA is outperformed by the other strategies. The 
combinatorics of such a search are quite explosive: Cliff 

reported on results from over 3.4 million individual 
simulations of market sessions, and his findings 
indicated that Vach’s observation was correct: AA’s 
dominance does indeed depends on how many other AA 
traders are in the market; and, in aggregate, AA was 
routinely outperformed by ZIP and by SHVR. 
Subsequent research by Snashall (2019) employed the 
same exhaustive testing method, using a supercomputer 
to run more than one million market simulations, to 
exhuastively test AA against IBM's GDX strategy: this 
again revealed that AA does not always dominate GDX: 
see Snashall & Cliff (2019) for further discussion.   

2.2. On Simulation Models of Markets 
Vernon Smith’s early experiments were laboratory 
models of so called open-outcry trading pits, a common 
sight in any real financial exchange before the arrival of 
electronic trader-terminals in the 1970s. In a trading pit, 
human traders huddle together and shout out their bids 
and offers, and also announce their willingness to accept 
a counterparty’s most recent shout. It was a chaotic 
scene, now largely consigned to the history books. In the 
closing quarter of the 20th Century, traders moved en 
masse to interacting with each other instead via 
electronic means: traders “shouted” their offer or bids or 
acceptances by typing orders on keyboards and then 
sending those orders to a central server that would 
display an aggregate summary of all orders currently 
“shouted” (i.e., quoted) onto the market. That aggregate 
summary is very often in the form of a Limit Order Book 
or LOB: the LOB summarizes all bids and offers 
currently live in the market. At its simplest, the LOB is a 
table of numbers, divided into the bid side and the ask 
side (also known as the offer side). Both sides of the LOB 
show the best price at the top, with less good prices 
arranged below in numeric order of price: for the bid side 
this means the highest-priced bid at the top with the 
remaining bid prices displayed in descending order 
below; and for the ask side the lowest-priced offer is at 
the top, with the remaining offers arranged in ascending 
order below. The arithmetic mean of the best bid and best 
ask prices is known as the mid-price, and their difference 
is the spread. For each side of the LOB, at each price on 
the LOB, the total quantity available is also shown, but 
with no indication of who the relevant orders came from: 
in this sense the LOB serves not only to aggregate all 
currently live orders, but also to anonymize them.  

Traders in LOB-based markets can usually cancel 
existing orders to delete them from the LOB. In a 
common simple implementation of a LOB, traders can 
accept the current best bid or best offer by issuing a quote 
that crosses the spread: i.e., by issuing an order that, if 
added to the LOB, would result in the best bid being at a 
higher price than the best ask. Rather than be added to 
the LOB, if a bid order crosses the spread then it is 
matched with the best offer on the ask side (known as 
lifting the ask), whereas an ask that crosses the spread is 
matched with the best bid (hitting the bid); and in either 
case a transaction then occurs between the trader that had 
posted the best price on the relevant side of the LOB, and 
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the trader that crossed the spread. The price of the 
resulting transaction is whatever price was hit or lifted 
from the top of the LOB.  

Smith’s earliest experiments pre-dated the arrival of 
electronic trading in real financial markets, and so they 
can be thought of as laboratory models of open-outcry 
trading pits: they were simulations of real markets, but 
were initially not computer-based simulations. Even 
though the much later work by Gode & Sunder, Cliff, 
Gjerstad & Dickhaut, and Vytelingum all came long after 
the introduction of electronic LOBs in real markets, these 
academic studies all stuck with Smith’s original 
methodology, of modelling open-outcry markets (often 
by essentially operating a LOB with the depth fixed at 1, 
so the only information available to traders is the current 
best, or most recent, bid and ask prices).  

Nevertheless, the studies by IBM researchers (Das et 
al., 2001; Tesauro & Das, 2001; Tesauro & Bredin 
2012), and also the replication and confirmation of AA 
results by De Luca & Cliff (2011a, 2011b) and by Stotter 
et al. (2013), all used LOB-based market simulators. The 
IBM simulator Magenta seems to have been proprietary 
to IBM; developed at TJ Watson Labs and not available 
for third-party use, but De Luca made an open-source 
release of his OpEx simulator (De Luca, 2015) which was 
subsequently used by Vach (2015) in the studies that 
prompted our work reported here. Also of relevance here 
is the ExPo simulator described by Stotter et al. (2013, 
2014): in the work by De Luca, by Vach, and by Stotter 
et al., Vytelingum’s original AA needed modifications to 
make it work in a LOB-based market environment. 

In this paper neither OpEx nor ExPo will be discussed 
further, but instead we will concentrate on BSE (BSE, 
2012; Cliff, 2018) which is another open-source EE 
market simulator, initially developed as a teaching aid 
but subsequently used as a platform for research (see, e.g. 
Le Calvez & Cliff, 2018, Snashall & Cliff 2019). BSE 
has the advantage of being relatively lightweight (a 
single Python script of c.2500 lines) and hence readily 
deployable over large numbers of virtual machines in the 
cloud. BSE maintains a dynamically updated LOB and 
also publishes a tape, a time-ordered record of all orders 
that have been executed. It comes with built-in versions 
of ZIC and ZIP, and also some additionally minimally-
simple non-adaptive trading strategies that can be used 
for benchmarking against other more complex strategies 
added by the user. One of these, the Shaver strategy 
(referred to in BSE by the abbreviation SHVR) simply 
reads the best prices on the LOB and, if it is able to do so 
without risking a loss-making deal then it issues an order 
that improves the current best bid or best ask by 0.01 
units of currency (i.e., one penny/cent), which is BSE's 
tick size, i.e. the minimum change in price that the system 
allows. Another of the BSE built-in trading strategies is 
even simpler than SHVR: the Giveaway strategy 
(abbreviated to GVWY) attempts to make no profit at all 
from trading, and simply posts a bid or offer price that is 
equal to the limit price assigned to it for that unit. As we 
will further discuss later in Section 4, when evaluated 
using conventional market simulation methods like those 

used in the papers reviewed below, GVWY can prove to 
be a profitable strategy: this counterintuitive result is one 
indication that evaluation via conventional means has 
some significant limits.  

2.3. Eight Key Papers with a Common Methodology 

2.3.1. Smith 1962 
Although precedents can be pointed to, Smith’s 1962 JPE 
paper is widely regarded as the seminal study in EE. In it 
he reported on experiments in which groups of human 
subjects were randomly assigned to be either buyers or 
sellers. Buyers were given a supply of artificial money, 
and sellers were given one or more identical items, of no 
intrinsic value, to sell. As discussed above, each trader in 
the market was assigned a private valuation, a secret limit 
price, above which they should not pay when buying and 
below which they should not accept when selling.  

After the allocation of assignments to all subjects, they 
then interacted via an open-outcry CDA while Smith and 
his assistants made notes on the sequence of events that 
unfolded during the experiment: typically, buyers would 
gradually increase their bid-prices, and sellers would 
gradually lower their offer-prices (also known as ask-
prices) until transactions started to occur. Eventually, 
usually within a few minutes, the experimental market 
reached a position in which no more trades could take 
place, which marked the end of a trading period or 
“trading day” in the experiment; any one experiment 
typically ran for n=5-10 periods, with all the traders 
being resupplied with money and items-for-sale at the 
start of each trading period. The sequence of n 
contiguous trading periods (or an equivalently long 
single-period experiment with continuous 
replenishment, as discussed in Section 4.3) is referred to 
here as one market session.  

Smith could induce specific supply and demand 
curves in these experimental markets by appropriate 
choices of the various limit-prices he assigned to the 
traders. The market’s theoretical equilibrium price 
(denoted hereafter by P0) is given by the point where the 
supply curve and the demand curve intersect. Smith 
found that, in these laboratory CDA markets populated 
with only remarkably small groups of human traders, 
transaction prices could reliably and rapidly converge on 
the theoretical P0  value despite the fact that each human 
trader was acting purely out of self-interest and knew 
only the limit price that he or she had been assigned. 

 Smith’s analysis of his results focused on a statistic 
that he referred to as a, the root mean square (RMS) 
deviation of actual transaction prices from the P0 value 
over the course of an experiment. In his early 
experiments, P0 was fixed for the duration of any one 
experiment; in later work Smith explored the ability of 
the market to respond to “price shocks” where, in an 
experiment of N trading days, on a specific day S<N the 
allocation of limit prices would be changed, altering P0 

from the value that had been in place over trading periods 
1, 2, …, S, to a different value of P0 that would then 
remain constant for the rest of the experiment, i.e. in 
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trading periods S+1, S+2, …, N. For brevity, in the rest 
of this paper Smith’s initial style of experiments will be 
referred to as S’62 experiments.  

2.3.2. ZIC: Gode & Sunder (1993) 
Gode & Sunder’s 1993 JPE paper used the S’62 
methodology, albeit with the CDA markets being 
electronic (a move Smith himself had made in his 
experiments many years earlier), so each trader was sat 
at a personal terminal, a computer screen and keyboard, 
from which they received all information about the 
market and via which they announced their orders, their 
bids or offers, to the rest of the traders in the experiment. 
Gode & Sunder (G&S hereafter) first conducted a set of 
experiments in which all the traders were human, to 
establish baseline statistics. Then, all the human traders 
were replaced with automated trading systems, absolute-
zero minimally-simple algo traders which G&S referred 
to as Zero Intelligence (ZI) traders. G&S studied markets 
populated with two type of ZI trader: ZI-Unconstrained 
(ZIU), which simply generated random prices for their 
bids or offers, regardless of whether those prices would 
lead to profitable transactions or to losses; and ZI-
Constrained (ZIC), which also generated random order 
prices but were constrained by their private limit prices 
to never announce prices that would lead them to loss-
making deals. G&S used fixed supply and demand 
schedules in each experiment, i.e. there were no price-
shocks in their experiments.  

Not surprisingly, the market dynamics of ZIU traders 
were nothing more than noise. But the surprising result 
in G&S’s paper was the revelation that a commonly used 
metric of market price dynamics known as allocative 
efficiency (AE, hereafter) was essentially 
indistinguishable between the human markets and the 
ZIC markets. Because AE had previously been seen as a 
marker of the degree to which the traders in a market 
were behaving intelligently, the fact that ZIC traders 
scored AE values largely the same as humans was a 
shock. Gode & Sunder proposed that a different metric 
should instead be used as a marker of the intelligence of 
traders in the market. This metric was profit dispersion 
(PD, hereafter) which measures the difference between 
the profit each trader accrued in an experiment, 
compared to the profit that would be expected for that 
trader if every transaction in the market had taken place 
at the market’s theoretical equilibrium price P0: humans 
typically showed very low values of PD (which is 
assumed to be good) while ZIC traders did not. On this 
basis, G&S argued that PD should be used in preference 
to AE.  

Other researchers were quick to cite G&S's ZIC result, 
and often used it to support the claim that, given the ZIC 
traders have no intelligence, then for transaction prices to 
converge toward the theoretical equilibrium price and/or 
for a group of traders to score highly on AE, somehow 
the "intelligence" required to do this must reside within 
the rules of the CDA market system rather than within 
the heads of the traders. Strangely, G&S's 1993 paper 
provides no concrete causal mechanistic explanation of 

how their striking ZIC results arise; they describe their 
methods, and the results observed, but the internal 
mechanisms that give rise to those results are left as 
something of a mystery, as if the CDA market was an 
impenetrable black-box.  

A causal mechanistic analysis of markets populated 
by ZIC traders was subsequently developed in (Cliff 
1997), which considered the probability mass functions 
(PMFs) of prices generated by ZIC buyers and sellers, 
and the joint PMF of transaction prices in ZIP markets, 
which is given by the intersection of the bid-price and 
offer-price PMFs: the shape of the transaction-price PMF 
is determined by the nature of the supply and demand 
curves in the market, and (Cliff, 1997) demonstrated that 
the supply and demand curves in a ZIC market 
experiment could be arranged so that the expected value 
of the transaction prices (computable as an integral over 
the PMF) is identical to the theoretical equilibrium price 
given by the intersection point of the supply and demand 
curves. This was why the five ZIC experiments reported 
in G&S's 1993 paper showed transaction prices that were 
centered on the theoretical equilibrium price in each case: 
the supply and demand curves were arranged in such a 
way that this was the expected outcome. Cliff (1997) 
showed that with different arrangements of supply and 
demand curves, such as situations where one or both 
curves were flat (as had been used in Smith's 1962 JPE 
paper), the expected price of transactions in ZIP markets 
could differ considerably from the theoretical 
equilibrium price, and so transaction prices in those ZIC 
markets would fail to exhibit  human-like convergence 
toward the theoretical equilibrium value. In these 
differently-designed experiments, ZIC traders would be 
revealed for exactly what they are: simple stochastic 
processes that only coincidentally exhibit human-like 
market dynamics when the experimenters happen to have 
chosen to impose the right kind of supply and demand 
curves. The (Cliff 1997) analysis showed that the level of 
intelligence in the ZIC traders was insufficient to recreate 
human-like market dynamics more broadly, and so a 
more intelligent automated trading strategy was required. 

Independently, roughly a decade later, and via a 
wholly different line of attack Gjerstad & Shachat (2007) 
also demolished the argument that G&S's ZIC results 
indicate that the efficiency or intelligence in the market 
system lies solely within the CDA mechanism. 
Nevertheless, G&Ss 1993 results continue to be widely 
and uncritically cited by various authors. 

2.3.3. ZIP: Cliff (1997) 
Taking direct inspiration both from Smith’s work and 
from the ZI paper by G&S, Cliff (1997) developed a ZI 
trading strategy that used simple machine-learning 
techniques to continuously adapt the randomly-generated 
prices quoted by the traders: this strategy, known as ZI-
Plus (ZIP) was demonstrated to show human-like market 
dynamics in experiments with flat supply and/or demand 
curves: (Cliff 1997) also showed theoretical analyses and 
empirical results which demonstrated that transaction 
prices in markets populated only by ZIC traders would 
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not converge to the theoretical equilibrium price when 
the supply and/or demand curves are flat (or, in the 
language of microeconomics, “perfectly elastic”). EE 
studies in which the supply and/or demand curve was flat 
had previously been reported by Smith and others, but 
G&S had not explored the response of their ZIC traders 
to this style of market. The work in (Cliff, 1997) involved 
no human traders: all the focus was on markets populated 
entirely by autonomous agents, by ZIP traders. In total 
there are results from fewer than 1,000 simulated market 
sessions reported on in (Cliff 1997). In all other regards 
(Cliff 1997) continued the S’62 tradition: key metrics 
were Smith’s a, AE, and PD, and the focus on 
homogenous markets continued the tradition established 
by Smith (who studied all-human markets) and by G&S 
(who studied markets homogeneously populated with 
either human, ZIU, or ZIC traders).  

2.3.4. GD: Gjerstad & Dickhaut (1997) 
Gjerstad’s PhD studies of price formation in CDA 
markets also involved creating an algorithm that could 
trade profitably by adapting its behavior over time, in 
response to market events (Gjerstad  & Dickhaut, 1998). 
In contrast to the ZI work, Gjerstad’s trading algorithm 
uses frequentist statistics, gradually constructing and 
refining a belief function that estimates the likelihood for 
a bid or offer to be accepted in the market at any 
particular time, mapping from price of the order to its 
probability of success. Gjerstad did not explicitly name 
his strategy, but it has since become widely known as the 
GD strategy. In all other regards, as with Cliff (1997) and 
G&S (1993), Gjerstad’s work was firmly in the S’62 
tradition: homogenous markets of GD traders interacting 
in a CDA, buying and selling single items, with the 
metrics being Smith’s a, AE, and PD. In a later paper, 
Gjerstad (2003) made some refinements to the GD 
algorithm and named it HBL (Heuristic Belief Learning), 
although the original GD remains by far the most cited.   

2.3.5. MGD: Das et al. (2001) 
In their landmark 2001 IJCAI paper, IBM researchers 
Das, Hanson, Kephart, & Tesauro studied the 
performance of GD and ZIP in a series of EE market 
experiments where, for the first time ever in the same 
market, some of the traders were robots while others 
were human (recall that the earlier work of Smith, of 
G&S, of Cliff, and of Gjerstad & Dickhaut had all studied 
homogeneous markets: either all-human or all-robot). 
Das et al. used a LOB-based market simulator called 
Magenta, developed by Gjerstad, and ran a total of six 
experiments, six market sessions, in which humans and 
robots interacted and where there were three shock-
changes to P0, i.e. four phases in any one experiment, 
each phase with a different P0 value that was held static 
over that phase. The surprising result in this paper was 
that robot trading strategies could consistently 
outperform human traders, by significant margins: a 
result that attracted worldwide media attention. Both GD 
and ZIP outperformed human traders, and in the six 
experiments reported by Das et al. the results from the 

two robot strategies are so similar as to not obviously be 
statistically significant. A subsequent paper by IBM’s 
Tesauro & Das (2001), reported on additional studies in 
which a Modified GD (MGD) strategy was exhibited 
what the authors described in the abstract of their paper 
as “…the strongest known performance of any published 
bidding strategy”.  

2.3.6. GDX: Tesauro & Bredin (2002) 
Extensions to MGD were reported by IBM researchers 
Tesauro & Bredin (2002) at AAMAS 2002. This paper 
described extensions to MGD, using dynamic 
programming methods: the extended version was named 
GDX and its performance was evaluated when competing 
in heterogenous markets with ZIP and other strategies. 
Tesauro and Bredin reported that GDX outperformed the 
other strategies and claimed in the abstract of their paper 
that GDX “...may offer the best performance of any 
published CDA bidding strategy.”  

2.3.7. AA: Vytelingum (2006) 
Vytelingum developed AA and documented it in full in 
his PhD thesis (2006) and in a major paper (Vytelingum 
et al., 2008). The internal mechanisms of AA are 
described in greater detail in Section 3 of this paper. 
Although Vytelingum’s work came a few years after the 
IBM publications, the discussion within Vytelingum’s 
publications is phrased very much in terms of the S’62 
methodology: the P0 value in his AA experiments was 
either fixed for the duration of each market session, or 
was subjected to a single “price shock” partway through 
the session (as described in Section 2.3.1); and again the 
primary metrics studied are Smith’s a, AE, and PD. 
Vytelingum presented results from heterogeneous 
market experiments where AA, GDX, and ZIP traders 
were in competition, and the published results indicated 
that AA outperformed both GDX and ZIP by small 
margins. In total, results from c.25,000 market sessions 
are presented in (Vytelingum et al., 2008).  

2.3.8. AA Dominates: De Luca & Cliff (2011) 
As part of the research leading to his 2015 PhD thesis, 
De Luca used his LOB-based OpEx market simulator 
system (De Luca, 2012) to study the performance of AA 
in heterogeneous market experiments where some of the 
traders were AA, some were other robot strategies such 
as ZIP, and some were human traders sat at terminals 
interacting with the other traders (human and robot) in 
the market via the OpEx GUI, in the style introduced by 
the IBM team in their IJCAI 2001 paper. De Luca & Cliff 
(2011a) had previously published results from 
comparing GDX and AA in OpEx, at ICAART-2011; 
and the first results from AA in human-agent studies 
were then published in a 2011 IJCAI paper (De Luca & 
Cliff, 2011b), in which AA was demonstrated to 
dominate not only humans but also GDX and ZIP. For 
consistency with what was by then a well-established 
methodology, in De Luca’s experiments the P0 value was 
static for sustained periods with occasional “shock” step-
changes to different values. Continuing the tradition 
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established by the IBM authors, the abstract of (De Luca 
& Cliff 2011b) claimed supremacy for AA: “We… 
demonstrate that AA’s performance against human 
traders is superior to that of ZIP, GD, and GDX. We 
therefore claim that… AA may offer the best performance 
of any published bidding strategy”. And, until the 
publication of Vach (2015), that claim appeared to be 
plausibly true. 

2.4. Actually, AA doesn't dominate 
Vach's 2015 Master's Thesis tells the story of his design 
of a new trading strategy based on ZIP and called 
ZIPOJA, which he then tested against AA, GDX, and 
ZIP. The testing revealed that ZIPOJA did not 
consistently outperform any of the three pre-existing 
strategies. But, in the course of that testing, as Vach 
checked and calibrated his implementations of the three 
pre-existing strategies, he found that AA could fail to 
dominate ZIP or GDX, depending on the proportions of 
the two strategies in the market: this runs counter to the 
established story that AA is the best-performing strategy. 
Tables 6.2 and 6.3 on p.47 of Vach's thesis show results 
from tests in which the performance of two trading 
strategies were tested in trials with proportions of the two 
trader strategies set at 6:0, 5:1, 4:2, 3:3, 2:4, 5:1, and 0:6. 
The ratios 6:0 and 0:6 are homogenously populated by 
one strategy or the other and hence are of little interest, 
because that one strategy necessarily dominates in those 
markets. In Vach's Table 6.2, AA is outperformed by ZIP 
when the ZIP:AA ratio is 1:5 – i.e, if one in six of the 
traders in the market are ZIP with the rest AA, then the 
ZIP traders will outperform the AAs: the efficiency of the 
ZIP traders was 99.5% while the efficiency of the AAs 
was 88.5%. In Vach's Table 6.3, AA is outperformed by 
GDX when the GDX:AA ratio is 3:3, 2:4, and 1:5.  

Vach then performed three-way simulations 
systematically varying the ratios of AA:GDX:ZIP over 
all possible permutations and, in his Fig.6.1i (p.53) he 
shows a 2D simplex diagram which summarizes those 
results: a 28-node regular isometric mesh is drawn over 
the surface of the simplex as a co-ordinate frame, and AA 
is the dominant strategy in only 11 of those 28 nodes. 
Each of the three strategies is by definition dominant at 
the node representing a homogeneous ratio (i.e., either 
1:0:0 or 0:1:0 or 0:0:1), so AA actually only dominates 
at 10 of the 25 nodes where it is actually contesting with 
the other two strategies: ZIP dominates one of the 
remaining nodes, and GDX dominates the remaining 14. 

In a final four-way study, with AA, GDX, ZIP, and 
ZIPOJA competing against each other, Vach (2015, 
Table 6.7, p.60) declares GDX the overall winner 
although in that experiment the scores of GDX and AA 
are sufficiently close that the difference between the two 
is not obviously significant. Nevertheless, it is 
undeniable that in Vach's four-way study AA fails to 
clearly dominate. To the best of our knowledge, Vach's 
results are the first exhaustive study of AA's performance 
as the number and proportion of competitor strategies is 
systematically varied, and he was the first to demonstrate 
that AA is in fact not the best-performing strategy.       

Cliff (2019) set out to replicate and extend Vach's 
results, using a finer-grained analysis, varying the 
proportions of AA, SHVR, ZIP, and ZIC, and also 
studying the effects of altering other aspects of the 
experiment design such as whether the replenishment of 
assignments to the traders is periodic or continuous-
stochastic (see e.g. Cliff & Preist 2001); and whether the 
equilibrium price P0 is largely constant with occasional 
shock-jumps, or continuously varying according to price-
movements taken from real-world markets. Cliff's results 
from conventional S'62-style experiments, with periodic 
replenishment and largely constant, confirmed the 
established view: when AA was tested in the kind of 
simple market environment as has traditionally been used 
in the previous literature, AA scored just as well as well-
known other trading strategies and was not dominated by 
them. But merely by altering the nature of the market 
environment to have continuous stochastic 
replenishment (which is surely what happens in real 
markets) and to have the equilibrium price P0 
continuously varying over time (which is also surely 
what happens in real markets), Cliff's results from AA 
were very poor indeed. Cliff (2019) concluded that AA’s 
success as reported in previous papers seemed to be 
largely due to the extent to which AA's internal 
mechanisms are designed to fit exactly the kind of 
experiment settings first introduced by Vernon Smith: 
AA is very well suited to situations in which all 
assignments are issued to all traders simultaneously, and 
in which P0 remains constant for sustained periods of 
time, with only occasional step-change “shocks”. Real 
markets are not like this, and when AA is deployed in the 
more realistic market setting provided by BSE, Cliff 
(2019) demonstrated that AA's dominance disappears.  

Cliff (2019) did not present results of exhaustive 
testing of AA against GDX, but Snashall's (2019) 
subsequent thesis did so, running more than one million 
simulation experiments. Snashall demonstrated that 
actually, even in the S'62 style of experiment that AA 
was first tested in, if AA is evaluated exhaustively in 
BSE across a wide range of proportions, then AA can be 
outperformed by GDX.  

However, as Snashall (2019) argues, GDX's apparent 
superiority in some situations may itself be illusory, 
because of the computationally intensive nature of the 
GDX algorithm. In Snashall's study, GDX (which 
extends the original GD algorithm with techniques from 
dynamic programming) took roughly ten times longer 
than AA or ZIP to compute its response to a change in 
the LOB, every time the LOB data altered. Such a 
disproportionately long time spent "thinking" would 
most likely be a serious impediment to deploying GDX 
in today's electronic markets where speed of reaction 
time is a critical factor in determining the success or 
failure of an automated trading system: see Snashall & 
Cliff (2019) for further discussion.  

3. MARKET MICROSTRUCTURAL ISSUES
The story told in Sections 2.1 to 2.4 should be of concern 
to anyone who cares about the use of simulation-based 
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evaluation in empirical science: a sequence of papers on 
performance of automated traders in simulated markets 
is published in leading international peer-reviewed AI 
conferences and journals, each building on and extending 
the work that had gone before it, and in which a set of 
apparently reasonable conclusions are drawn that, 
roughly a decade later, more sophisticated simulation 
studies call into serious question.  

It is very important to note here that I am not calling 
into question the honesty or professionalism of the 
researchers involved in this sequence of papers. Each of 
the papers reviewed above was, as far as I know, 
prepared in good faith and then subjected to high 
standards of peer-review. There is no reason to doubt any 
of the results published in any of those papers. The issue 
is not with the results or the researchers, but rather with 
the wider methodological context, the "spirit of the time", 
within which these studies were conducted.  

So, for example, there is no reason to doubt that 
Vytelingum's (2006, Vytleingum et al. 2008) published 
results showing AA outperforming GDX are genuine. 
They can be trusted as a fair representation of what 
happens when AA is placed in a S'62-style market 
simulator (as had also been used in Cliff's 1997 ZIP 
publication) in which all assignments are reissued 
periodically and there is no LOB. But as the results of 
Vach (2015), Cliff (2019), Snashall (2019), and Snashall 
& Cliff (2019) show, as soon as AA is deployed in a more 
realistic market simulator (such as BSE, in which there 
is a fully working LOB, and in which assignment updates 
arrive in a continuous random stream rather than in neat 
periodic bursts to all traders simultaneously), AA's 
dominance disappears.  

AA, just like ZIP, GD, MGD, and GDX, has a 
simplicity in its specification that is a reflection of the 
simplicity of the underlying market simulators in which 
it was developed and tested. For example, if all traders' 
individual assignments are issued simultaneously in 
periodic bursts at the start of each trading period (each 
"day", as in the S'62 experiments), and each trader is 
given only one unit to buy or sell per assignment, then it 
makes perfect sense to also clear the LOB at the start of 
each trading period (also as in S'62) and hence the traders 
in the market never have to deal with order cancellations 
(i.e., where an existing limit order visible on the LOB is 
cancelled by the trader who issued that order, and the 
LOB is updated to reflect that change). As soon as the 
issuing of assignments is switched to be a continuous 
stochastic stream, occasions will arise in which a trader 
receives a new assignment and hence has to cancel a limit 
order that was previously issued to the exchange – e.g. 
because the new assignment has a radically different 
limit price to the previous one. As soon as cancellations 
are a routine occurrence, all of the trading algorithms 
described here need to be amended or extended to 
correctly distinguish between changes in the LOB that 
are the result of actual transactions taking place, and 
changes that are the result of cancellations.  

So the real issue here instead seems (now, with 
hindsight) to be the extent to which the simplistic 

underlying market simulators were trusted by the entire 
community of researchers: the people doing the actual 
work and writing the papers; the people doing the 
reviewing; and the people who subsequently cited the 
published papers. (And, for the avoidance of doubt, I 
myself fall into all three of those categories: so, mea 
culpa). Smith's 1962 experiments used a non-computer-
based manual simulation of the CDA found in real 
financial markets; once the S'62 methodology was 
established, it was natural for subsequent papers to use 
close copies of that methodology, to ease the comparison 
of new results with those already published. Hence it is 
natural that first G&S (1993), then Cliff (1997) and 
Gjerstad & Dickhaut (1998), and latterly Vytelingum 
(2006, 2008) all used essentially the same methodology. 

Similarly, as Snashall (2019) has highlighted, the 
commonly-used simple single-threaded simulation 
approximations to what in real life is a parallel and 
asynchronous distributed system mean that the much 
longer compute-times required by GDX have not 
previously been highlighted by other researchers. Many 
real-world trading strategies have to be sensitive not only 
to the price that is agreed for a transaction, but also how 
much time is taken in arriving at an agreed price. While 
Kaplan's Sniper strategy (Rust et al. 1992) and Gjerstad's 
(2003) HBL strategy are both time-sensitive to varying 
degrees, these two strategies are the exception rather than 
the rule: yet the strategies described in the key papers 
reviewed here all essentially ignore timing issues and 
concentrate only on price. A very recent paper by Miles 
& Cliff (2019) discusses issues of latency and time-
sensitivity in more detail.  

And, in addition to considerations of price and time, 
there is a third factor that any real-world trading agent is 
likely to pay attention to: the quantity available at any 
particular price (also referred to as the size or the 
volume). In particular, if there is a much larger quantity 
available at the best price on one side of the LOB in 
comparison to the other side, that imbalance can be a 
strong indication that the market price is likely to move 
in the near future: excess supply pushes prices down; 
excess supply pushes price up. Market shocks can occur 
not only via sudden changes in prices (with quantities 
available remaining the same), but also by sudden 
changes in the quantities available (with the prices 
staying unchanged, initially at least). As with time-
sensitivity, size-sensitivity was essentially ignored by the 
authors of the key papers reviewed above. A very recent 
publication by Church & Cliff (2019) discusses size 
issues in more detail.  

All of these concerns are essentially microstructural: 
the details of how the assignments are distributed to the 
traders; how the traders' orders are processed by the 
exchange and what data the exchange then publishes to 
the traders for them to react to and act upon; and which 
factors of the orders on the LOB matter to traders (i.e: 
price, size, and timing). However, there are also broader 
issues, characterized here as macrostructural, discussed 
in the next section.  
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4. MARKET MACROSTRUCTURAL ISSUES 
Smith's 1962 experiments are a fair approximation to an 
open-outcry trading pit, which was a common sight in 
financial exchanges prior to their wholesale automation 
in the last thirty-five years: a group of traders gathered in 
close physical proximity, shouting and gesturing at each 
other while trying to find a counterparty to trade with. It 
seems entirely reasonable for Smith to have set up a 
(manual) simulation of the financial exchanges of his day 
for his laboratory studies of the CDA, but that was more 
than half a century ago; surely today's market simulations 
should be structured in such a way that they are closer to 
the realities of today's actual financial markets? 

The market simulators used in all the studies reviewed 
in Section 2 each essentially followed the S'62 pattern: 
some population of individual traders compete within a 
given market mechanism, and summary statistics (such 
as a, AE, and PD) are computed across the population of 
traders. So, in that sense, they are also simulations of a 
single trading pit. But the reliance on computing 
population-level statistics gives rise to a result that makes 
little sense: the minimally simple GVWY trading 
strategy, introduced in Section 2.2, seeks no profit at all 
and yet when its performance is measured in a population 
of traders, using standard population-level statistics, it 
can routinely outperform other more intelligent traders. 
In particular, GVWY traders (which always and 
immediately post orders on the LOB with prices equal to 
their private limit price, thereby guarantee them zero 
profit if their order is accepted by a counterparty) can 
often score an average profit per trader that is as good as, 
or better than, the average profit per trader of supposedly 
intelligent adaptive trading strategies such as AA or ZIP.  

This counterintuitive result does have a rational 
explanation: an individual GVWY buyer(seller) can do 
well against any other type of trader if its private limit 
price LG is sufficiently above(below) the best price on the 
ask(bid) side of the LOB. For example, say that you have 
a GVWY buyer G with limit price LG =150, and the 
LOB's current best bid is 90 and best ask is 100, with that 
best ask coming from a seller whose private limit price is 
LS=80): the GVWY trader G is polled to provide a quote 
and bids 150. This crosses the spread (because 150>100), 
and so the transaction goes through at price of current 
best ask, i.e. 100. That gives the seller who posted the ask 
a profit of 100-LS=20, and the GVWY gets a profit of LG 
-100=50. So, even though the GVWY order submitted to 
the market would have generated no profit for that trader 
if it had been accepted at the indicated price, instead the 
order crosses the spread and so the GVWY trader makes 
a nonzero profit equal to the difference between the best 
price on the counterparty side of the LOB. As an 
individual GVWY can never make a negative profit, its 
average score will be computed from the sum of a 
sequence of profits that are either zero or positive, and so 
the average profit per GVWY trader will often be a 
positive value. This shows how GVWY can make profit. 
Exactly how much profit GVWY can make depends 
quite a lot on the Supply/Demand schedule in the market 
at that time, and on the mix of other strategies that it finds 

itself competing with. But, crucially, adaptive strategies 
such as AA, ZIP, or GDX, may take some time to adjust 
their prices to the point where they successfully identify 
a counterparty to trade with, and in the time it takes an 
adaptive strategy to find a counterparty to trade with, a 
GVWY trader might have executed a sequence of several 
transactions. So although the GVWY average profit per 
trade may be small, and although its transactions may go 
through at prices some way distant from P0 (so its score 
for a may be poor in comparison to other strategies) by 
the end of an experiment its average profit per trader may 
actually be better than those of the adaptive "intelligent" 
trading strategies. Whether this happens or not depends 
on the proportions of the different trading staregies and 
the nature of the experimental market's supply and 
demand and updates to traders' assignments, but the fact 
that it can happen at all gives some pause for thought: in 
principle, when evaluated using the conventional 
techniques, GVWY could out-perform any of the more 
sophisticated trading strategies.  

This calls into question the measuring of the 
performance of trading strategies at the population level: 
when monitored across a population, GVWY can come 
out as a good/dominant strategy because it’s constrained 
to never post a quote price the wrong side of its limit 
price and so it never enters into loss-making deals. 
GVWY never loses, but occasionally wins big; aggregate 
this over lots of individuals doing lots of deals and 
GVWY's apparent profits can start to add up. Then 
couple that with the fact that GVWY is wholly 
incautious: it “goes for the deal” as fast as it can and 
either gets some profit or nothing, but then gets another 
assignment to deal with. Adaptive algorithms like ZIP 
and AA and MGD/GDX all spend a bit of time doing 
their adapting – they can often commence by quoting a 
price some distance from equilibrium and then gradually 
edge towards it, which means their count of trades per 
unit time is much lower than GVWY, which counts 
against them when they’re ranked on profit-per-unit-
time. Someone who studies trading strategies only in the 
conventional S'62 style of experiment might reasonably 
conclude that GVWY is a good strategy.  

But this is not likely to go down well in a real trading 
situation, because real traders do not evaluate their 
performance at the population level: they are typically 
ruthlessly self-interested, and care only about the profit 
that they make as an individual. This is a key macro-level 
issue: while academic economists seem primarily 
interested in population-level statistics, individual 
traders tend instead to be singularly focused on their own 
personal profit-and-loss (P&L), and not much else.  

From this it seems plausible to conjecture that the 
progression of ZIC-ZIP/GD-MGD/GDX-AA described 
in Section 2 may have been a result of people testing their 
trading agents in unrealistic environments and measuring 
them with the wrong metrics. If the underlying 
simulations had been more realistic, the tale of which 
strategy comes out as best (or whether any one strategy 
ever comes out as consistently better than the others) 
could plausibly have been a different story. And the best 
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way of testing that conjecture is to start building and 
using market simulators that more accurately reflect 
modern financial markets. 

For instance, in many contemporary financial 
markets, the key players are no longer individual traders, 
single humans buying or selling, but instead the market 
is populated by some number N of trading entities which 
(although they could in principle still be individual 
humans) are more likely to be trading institutions such as 
banks or fund management companies. In most such 
trading entities, there will be a currently trusted, 
established trading system known as the production 
system (because it is deployed in live trading, in 
production) which is made up of one or more distinct 
trading strategies working in concert. Any one instance 
of a production system is likely to be well-suited to the 
market circumstances that prevailed at the time that it 
was introduced, but market circumstances rarely stay the 
same for long and so what is a profitable production 
system this week or this month may be generating much 
less income next week or next month, and for that reason 
it is common for trading entities to always also be 
working on a development system, again a set of one or 
more coordinated trading strategies, which is intended to 
be deployed as the eventual replacement for the current 
production system. Practitioners working with such 
coupled pairs of trading systems often use the 
abbreviations "prod" for the production system and "dev" 
for the development system: we'll use them in the rest of 
this paper too. 

In the previous paragraph the phrase "one or more" 
was emphasized when introducing the notion of prod and 
dev systems to highlight the issue that many real-world 
trading entities now routinely employ what are 
commonly known as algo-wheels: systems that, for each 
order to be executed, automatically select one particular 
algorithmic trading strategy (the algo) from among a set 
of potentially applicable strategies (the wheel), 
depending on the nature of the order and the market 
conditions prevailing at the time. One of the first algo-
wheel offerings to achieve widespread notice was the 
Algo Switching Engine from Pipeline Trading Systems 
LLC: see e.g. Stephens & Waelbroeck (2009). 

A more accurate simulation model of contemporary 
automated markets would capture all of the above 
macrostructural factors: i.e., have the simulator allow for 
N trading entities, each trying to make profit from its 
current set of one or more prod trading strategies while 
also each working on one or more dev trading strategies 
that are intended to improve upon the current prod 
strategies. As in real markets, each entity should be able 
to monitor only its own (P&L) on its various strategies; 
for any one entity the technical details of its strategies 
and their individual P&L streams are private, not 
disclosed to any other trading entities, and hence any one 
entity has no knowledge of the technical details or the 
profitability of the trading strategies being deployed by 
the various other entities that it is competing with in the 
market. A simulator constructed in this way would be a 
major step towards providing a test-bed for simulation 

studies in which new trading strategies, expressed as 
algorithms, can be evaluated in environments that are 
reasonable approximations of today's financial markets. 
In the next Section, I describe how the freely-available 
open-source BSE market simulator has been extended to 
meet these needs.  

5. BSE2: SIMULATING MODERN MARKETS
The BSE financial-market simulator (BSE 2012, Cliff 

2018) has undergone major refactoring and extension, 
resulting in a "Version 2" of BSE, known as BSE2. The 
source code for this, written in Python, is being made 
freely available via the BSE GitHub repository. 

BSE2 models current real-world financial markets in 
which some number N of profit-seeking legal entities 
each deploy proprietary automated trading systems. Each 
individual entity maintains an internal population of 
trading strategies, which it can select among for each 
order that is executed. In the simplest case, BSE2 can be 
configured so that each entity has an internal strategy 
population of size 1, so each entity is running a single 
specific strategy: this implements the S'62 style of 
modelling witnessed in the papers reviewed in Section 2. 

To simulate a modern market scenario, each of the N 
entities simultaneously runs at least two trading 
strategies: one or more operational prod strategies which 
are to some extent trusted; and one or more dev strategies 
which are to some extent experimental improvements on 
that entity’s current production strategies. The N 
populations of strategies, one population per entity, 
manifestly invite comparison with research studying 
meta-population dynamics. Taking the minimal case of 
each entity running only one prod and one dev strategy, 
as a first approximation the strategy innovation and 
improvement process within any one entity can be 
usefully modelled as a (1+1) Evolution Strategy (ES) 
optimization system: see e.g. Beyer & Schwefel 2002). 
The overall system is in fact co-evolutionary because the 
profitability (or, in the language of ESs, the fitness 
function) for any one entity’s trading activity is defined 
at any one time largely by the nature of the N-1 other 
entities’ current trading strategies, which are 
simultaneously in the process of adapting. Preliminary 
simulation results studying co-adaptive dynamics in 
metapopulations of traders have been reported by 
Witchett (2004) using a version of the original ZIP 
market simulator (Cliff, 1997); and more recently by 
Hukerikar (2019) who worked with the original 
(Version-1) BSE studying the population dynamics of 
various simple trading strategies based on parameterized 
versions of ZIC,  SHVR and GVWY, three of the built-
in strategies in BSE.  

BSE2 enables studying the evolutionary optimization 
of sets of parameter values for pre-established algorithms 
(see e.g. Cliff, 2009), operating in modern market 
settings; and could in further work be additionally 
extended to allow arbitrary trading strategies to be 
evolved and adapted via a genetic programming 
approach, revisiting early work such as that by Andrews 
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& Prager (1994), but in the modern market contexts 
provided by BSE2. 

The various BSE2 source-code files can trivially be 
combined into a single Python script which can then 
readily be copied and launched across multiple virtual 
machines (VMs) from a commercial cloud service 
provider, so that many experiments can be conducted in 
parallel across a bank of VMs: the variability of market 
systems and the nature of the exhaustive testing required 
to establish rigorous results is likely forever more to 
require many millions of individual market sessions to be 
simulated, but this is a task that is embarrassingly 
parallel (i.e., when N i.i.d. simulation sessions are split 
across M machines, so that each machine is responsible 
for N/M simulated sessions, the speed-up factor is 
directly proportional to M).  

The BSE2 GitHub repository, like the original BSE 
repository first created in 2012, offers not only the 
source-code for the BSE exchange simulator itself, but 
also the source-code for the trading algorithms ZIC, ZIP, 
GDX, and AA that were introduced in the review of key 
literature in Section 2, along with the source-code for 
simpler test strategies such as SHVR and GVWY. This 
served an important function of providing reference 
implementations for frequently-cited trading strategies, 
and is only notable because the authors of the papers 
introducing what were proposed (at the time) as world-
leading algorithms such GDX and AA did not provide 
any sample code: the published descriptions of those two 
algorithms are both written only as narrative English text 
with occasional mathematical equations, and hence are 
open to some variation in interpretation. If the scientific 
study of trading strategies is to proceed smoothly, there 
is a need not only for a common and open freely-
available up-to-date simulator for financial markets (as is 
now provided by BSE2) but also for freely-available 
open-source reference implementations of the major 
algorithms in the published literature (a point that was 
made forcefully over a decade ago by Toft, 2007), and of 
any other algorithms published in future.  

6. SUMMARY
The BSE financial-market simulator (BSE 2012, Cliff 

2018) has undergone major refactoring and extension, 
and is now known as BSE2. The BSE2 source-code is 
freely available on GitHub. BSE2 offers the facility not 
only for continuing to conduct experiments in the style 
of Smith (1962) but also allows trading strategies to be 
tested in simulations of modern-day markets where 
multiple trading entities, each in principle running more 
than one trading strategy at any one time, co-adapt via 
their interactions in the market. Because of the increased 
realism of BSE2, understanding the co-adaptive 
dynamics of market scenarios simulated in BSE2 is 
likely to help further our understanding of the dynamics 
of real-world financial markets, which are themselves 
inherently co-adaptive. Doing such work rigorously 
requires a shift in mind-set from the old view (prevalent 
in the key papers reviewed in Section 2) that a few tens 
of thousands of simulation sessions is sufficient to 

establish trusted results, to a new revised norm where it 
is routine for results to be published from tens or 
hundreds of millions of such experiments: the ready 
availability of cheap cloud computing services makes 
such an increase in CPU-cycles expended both 
practicable (because of the embarrassingly parallel 
nature of the simulations) and affordable (because of the 
economies of scale that have driven the development of 
commercial cloud service provisioning). As with its 
predecessor version, the BSE2 simulator has been made 
freely available via a standard MIT Open Source Licence 
on the GitHub public repository, and this includes not 
only the source-code for the exchange but also the 
source-code for various well-known trading strategies. 
The intention is that the BSE2 codebase becomes a 
common platform that is collectively refined and 
extended by the community of researchers interested in 
testing trading strategies in agent-based models of 
current real-world financial networks. If that does 
happen, then the effort expended in getting it this far will 
have been worthwhile.  
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